{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# Loading Dependency Injection Container in Jupyter Notebook" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "from ctp_slack_bot.containers import Container\n", "from ctp_slack_bot.services import VectorDatabaseService\n", "\n", "container = Container()\n", "container.wire(packages=['ctp_slack_bot'])" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2025-04-19 16:43:46.927\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.core.config\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m14\u001b[0m - \u001b[34m\u001b[1mCreated Settings\u001b[0m\n" ] }, { "data": { "text/plain": [ "Settings(LOG_LEVEL='INFO', LOG_FORMAT='json', SCHEDULER_TIMEZONE='America/New_York', SLACK_BOT_TOKEN=SecretStr('**********'), SLACK_APP_TOKEN=SecretStr('**********'), EMBEDDING_MODEL='text-embedding-3-small', VECTOR_DIMENSION=1536, CHUNK_SIZE=1000, CHUNK_OVERLAP=200, TOP_K_MATCHES=5, MONGODB_URI=SecretStr('**********'), MONGODB_NAME='ctp_slack_bot', SCORE_THRESHOLD=0.5, HF_API_TOKEN=SecretStr('**********'), OPENAI_API_KEY=SecretStr('**********'), CHAT_MODEL='gpt-3.5-turbo', MAX_TOKENS=150, TEMPERATURE=0.8, SYSTEM_PROMPT=\"You are a helpful teaching assistant for a data science class.\\nBased on the students question, you will be given context retreived from class transcripts and materials to answer their question.\\nYour responses should be:\\n\\n1. Accurate and based on the class content\\n2. Clear and educational\\n3. Concise but complete\\nIf you're unsure about something, acknowledge it and suggest asking the professor.\", GOOGLE_PROJECT_ID='voltaic-reducer-294821', GOOGLE_PRIVATE_KEY_ID=SecretStr('**********'), GOOGLE_PRIVATE_KEY=SecretStr('**********'), GOOGLE_CLIENT_ID='102943207835073856980', GOOGLE_CLIENT_EMAIL='ctp-slack-bot-714@voltaic-reducer-294821.iam.gserviceaccount.com', GOOGLE_AUTH_URI='https://accounts.google.com/o/oauth2/auth', GOOGLE_TOKEN_URI='https://oauth2.googleapis.com/token', GOOGLE_AUTH_PROVIDER_CERT_URL='https://www.googleapis.com/oauth2/v1/certs', GOOGLE_CLIENT_CERT_URL='https://www.googleapis.com/robot/v1/metadata/x509/ctp-slack-bot-714%40voltaic-reducer-294821.iam.gserviceaccount.com', GOOGLE_UNIVERSE_DOMAIN='googleapis.com', FILE_MONITOR_ROOT_PATH='Transcripts/Friday Building AI Applications Session')" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "container.settings()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2025-04-19 16:45:25.997\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.core.config\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m14\u001b[0m - \u001b[34m\u001b[1mCreated Settings\u001b[0m\n" ] }, { "name": "stderr", "output_type": "stream", "text": [ "\u001b[32m2025-04-19 16:45:25.999\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36minit\u001b[0m:\u001b[36m175\u001b[0m - \u001b[1mInitializing MongoDB connection for database: ctp_slack_bot\u001b[0m\n", "\u001b[32m2025-04-19 16:45:25.999\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m26\u001b[0m - \u001b[34m\u001b[1mCreated MongoDB\u001b[0m\n", "\u001b[32m2025-04-19 16:45:25.999\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36mconnect\u001b[0m:\u001b[36m32\u001b[0m - \u001b[34m\u001b[1mConnecting to MongoDB using URI: mongodb+srv://ctp-slack-bot.xkipuvm.mongodb.net/?retryWrites=true&w=majority&appName=ctp-slack-bot\u001b[0m\n", "\u001b[32m2025-04-19 16:45:26.000\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36mconnect\u001b[0m:\u001b[36m49\u001b[0m - \u001b[34m\u001b[1mMongoDB client initialized for database: ctp_slack_bot\u001b[0m\n", "\u001b[32m2025-04-19 16:45:26.279\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36mping\u001b[0m:\u001b[36m85\u001b[0m - \u001b[34m\u001b[1mMongoDB connection is active!\u001b[0m\n", "\u001b[32m2025-04-19 16:45:26.280\u001b[0m | \u001b[1mINFO \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36m_test_connection\u001b[0m:\u001b[36m186\u001b[0m - \u001b[1mMongoDB connection test successful!\u001b[0m\n", "\u001b[32m2025-04-19 16:45:26.280\u001b[0m | \u001b[34m\u001b[1mDEBUG \u001b[0m | \u001b[36mctp_slack_bot.services.vector_database_service\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m21\u001b[0m - \u001b[34m\u001b[1mCreated VectorDatabaseService\u001b[0m\n" ] } ], "source": [ "vector_database_service: VectorDatabaseService = container.vector_database_service()" ] } ], "metadata": { "kernelspec": { "display_name": ".venv", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.12.3" } }, "nbformat": 4, "nbformat_minor": 2 }