Spaces:
Runtime error
Runtime error
Merge branch health-check into alt
Browse files- Dockerfile +6 -1
- README.md +1 -0
- scripts/run.sh +7 -0
- src/ctp_slack_bot/containers.py +4 -4
- src/ctp_slack_bot/db/mongo_db.py +21 -87
- src/ctp_slack_bot/db/repositories/__init__.py +1 -0
- src/ctp_slack_bot/db/repositories/mongo_db_vectorized_chunk_repository.py +156 -60
- src/ctp_slack_bot/db/repositories/vector_repository_base.py +62 -0
- src/ctp_slack_bot/db/repositories/vectorized_chunk_repository.py +37 -15
- src/ctp_slack_bot/models/base.py +19 -7
- src/ctp_slack_bot/models/slack.py +6 -6
- src/ctp_slack_bot/models/webvtt.py +6 -7
- src/ctp_slack_bot/services/content_ingestion_service.py +5 -6
- src/ctp_slack_bot/services/context_retrieval_service.py +13 -23
- src/ctp_slack_bot/services/vector_database_service.py +35 -143
- src/ctp_slack_bot/utils/__init__.py +1 -0
- src/ctp_slack_bot/utils/immutable.py +22 -0
- temporary_health_check_server.py +11 -0
Dockerfile
CHANGED
@@ -28,5 +28,10 @@ USER appuser
|
|
28 |
# Expose a volume mount for logs ― Hugging Face Spaces requires specifically /data.
|
29 |
VOLUME /data
|
30 |
|
|
|
|
|
|
|
|
|
|
|
31 |
# Run the application.
|
32 |
-
CMD ["python", "-m", "ctp_slack_bot.app"]
|
|
|
28 |
# Expose a volume mount for logs ― Hugging Face Spaces requires specifically /data.
|
29 |
VOLUME /data
|
30 |
|
31 |
+
# Temporary block for the health server fix:
|
32 |
+
COPY scripts/run.sh ./scripts/
|
33 |
+
COPY temporary_health_check_server.py ./
|
34 |
+
CMD ["./scripts/run.sh"]
|
35 |
+
|
36 |
# Run the application.
|
37 |
+
#CMD ["python", "-m", "ctp_slack_bot.app"]
|
README.md
CHANGED
@@ -7,6 +7,7 @@ sdk: docker
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
short_description: Spring 2025 CTP Slack Bot RAG system
|
|
|
10 |
---
|
11 |
|
12 |
|
|
|
7 |
pinned: false
|
8 |
license: mit
|
9 |
short_description: Spring 2025 CTP Slack Bot RAG system
|
10 |
+
app_port: 8080
|
11 |
---
|
12 |
|
13 |
|
scripts/run.sh
ADDED
@@ -0,0 +1,7 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
#!/bin/bash
|
2 |
+
|
3 |
+
parent_path=$(cd "$(dirname "${BASH_SOURCE[0]}")"; pwd -P)
|
4 |
+
|
5 |
+
cd "${parent_path}/.."
|
6 |
+
|
7 |
+
python "temporary_health_check_server.py" & python -m ctp_slack_bot.app
|
src/ctp_slack_bot/containers.py
CHANGED
@@ -7,7 +7,7 @@ from slack_bolt.async_app import AsyncApp
|
|
7 |
|
8 |
from ctp_slack_bot.core.config import Settings
|
9 |
from ctp_slack_bot.db.mongo_db import MongoDBResource
|
10 |
-
from ctp_slack_bot.db.repositories.mongo_db_vectorized_chunk_repository import
|
11 |
from ctp_slack_bot.mime_type_handlers.base import MimeTypeHandlerMeta
|
12 |
from ctp_slack_bot.services.answer_retrieval_service import AnswerRetrievalService
|
13 |
from ctp_slack_bot.services.content_ingestion_service import ContentIngestionService
|
@@ -34,13 +34,13 @@ def __load_plugins(plugin_dir) -> None:
|
|
34 |
__load_plugins("ctp_slack_bot/mime_type_handlers")
|
35 |
|
36 |
|
37 |
-
class Container(DeclarativeContainer):
|
38 |
settings = Singleton(Settings)
|
39 |
event_brokerage_service = Singleton(EventBrokerageService)
|
40 |
schedule_service = Resource(ScheduleServiceResource, settings=settings)
|
41 |
mongo_db = Resource(MongoDBResource, settings=settings) # TODO: generalize to any database.
|
42 |
-
vectorized_chunk_repository =
|
43 |
-
vector_database_service = Singleton(VectorDatabaseService, settings=settings,
|
44 |
embeddings_model_service = Singleton(EmbeddingsModelService, settings=settings)
|
45 |
vectorization_service = Singleton(VectorizationService, settings=settings, embeddings_model_service=embeddings_model_service)
|
46 |
content_ingestion_service = Singleton(ContentIngestionService, settings=settings, event_brokerage_service=event_brokerage_service, vector_database_service=vector_database_service, vectorization_service=vectorization_service)
|
|
|
7 |
|
8 |
from ctp_slack_bot.core.config import Settings
|
9 |
from ctp_slack_bot.db.mongo_db import MongoDBResource
|
10 |
+
from ctp_slack_bot.db.repositories.mongo_db_vectorized_chunk_repository import MongoVectorizedChunkRepositoryResource
|
11 |
from ctp_slack_bot.mime_type_handlers.base import MimeTypeHandlerMeta
|
12 |
from ctp_slack_bot.services.answer_retrieval_service import AnswerRetrievalService
|
13 |
from ctp_slack_bot.services.content_ingestion_service import ContentIngestionService
|
|
|
34 |
__load_plugins("ctp_slack_bot/mime_type_handlers")
|
35 |
|
36 |
|
37 |
+
class Container(DeclarativeContainer): # TODO: audit for potential async-related bugs.
|
38 |
settings = Singleton(Settings)
|
39 |
event_brokerage_service = Singleton(EventBrokerageService)
|
40 |
schedule_service = Resource(ScheduleServiceResource, settings=settings)
|
41 |
mongo_db = Resource(MongoDBResource, settings=settings) # TODO: generalize to any database.
|
42 |
+
vectorized_chunk_repository = Resource(MongoVectorizedChunkRepositoryResource, settings=settings, mongo_db=mongo_db)
|
43 |
+
vector_database_service = Singleton(VectorDatabaseService, settings=settings, vectorized_chunk_repository=vectorized_chunk_repository)
|
44 |
embeddings_model_service = Singleton(EmbeddingsModelService, settings=settings)
|
45 |
vectorization_service = Singleton(VectorizationService, settings=settings, embeddings_model_service=embeddings_model_service)
|
46 |
content_ingestion_service = Singleton(ContentIngestionService, settings=settings, event_brokerage_service=event_brokerage_service, vector_database_service=vector_database_service, vectorization_service=vectorization_service)
|
src/ctp_slack_bot/db/mongo_db.py
CHANGED
@@ -1,15 +1,14 @@
|
|
1 |
-
from asyncio import create_task
|
2 |
from dependency_injector.resources import AsyncResource
|
3 |
-
from motor.motor_asyncio import AsyncIOMotorClient
|
4 |
from pymongo.errors import ConnectionFailure, ServerSelectionTimeoutError
|
5 |
-
from pymongo.operations import SearchIndexModel
|
6 |
from loguru import logger
|
7 |
from pydantic import BaseModel, PrivateAttr
|
8 |
-
from typing import Any, Dict,
|
9 |
|
10 |
from ctp_slack_bot.core.config import Settings
|
11 |
from ctp_slack_bot.utils import sanitize_mongo_db_uri
|
12 |
|
|
|
13 |
class MongoDB(BaseModel):
|
14 |
"""
|
15 |
MongoDB connection manager using Motor for async operations.
|
@@ -19,6 +18,7 @@ class MongoDB(BaseModel):
|
|
19 |
_db: PrivateAttr = PrivateAttr()
|
20 |
|
21 |
class Config:
|
|
|
22 |
arbitrary_types_allowed = True
|
23 |
|
24 |
def __init__(self: Self, **data: Dict[str, Any]) -> None:
|
@@ -31,7 +31,7 @@ class MongoDB(BaseModel):
|
|
31 |
connection_string = self.settings.MONGODB_URI.get_secret_value()
|
32 |
logger.debug("Connecting to MongoDB using URI: {}", sanitize_mongo_db_uri(connection_string))
|
33 |
|
34 |
-
# Create client with appropriate settings
|
35 |
self._client = AsyncIOMotorClient(
|
36 |
connection_string,
|
37 |
serverSelectionTimeoutMS=5000,
|
@@ -42,7 +42,7 @@ class MongoDB(BaseModel):
|
|
42 |
w="majority"
|
43 |
)
|
44 |
|
45 |
-
#
|
46 |
db_name = self.settings.MONGODB_NAME
|
47 |
|
48 |
self._db = self._client[db_name]
|
@@ -54,116 +54,50 @@ class MongoDB(BaseModel):
|
|
54 |
self._db = None
|
55 |
raise
|
56 |
|
57 |
-
@property
|
58 |
-
def client(self: Self) -> AsyncIOMotorClient:
|
59 |
-
"""Get the MongoDB client instance."""
|
60 |
-
if not hasattr(self, '_client') or self._client is None:
|
61 |
-
logger.warning("MongoDB client not initialized. Attempting to initialize…")
|
62 |
-
self.connect()
|
63 |
-
if not hasattr(self, '_client') or self._client is None:
|
64 |
-
raise ConnectionError("Failed to initialize MongoDB client.")
|
65 |
-
return self._client
|
66 |
-
|
67 |
-
@property
|
68 |
-
def db(self: Self) -> Any:
|
69 |
-
"""Get the MongoDB database instance."""
|
70 |
-
if not hasattr(self, '_db') or self._db is None:
|
71 |
-
logger.warning("MongoDB database not initialized. Attempting to initialize client…")
|
72 |
-
self.connect()
|
73 |
-
if not hasattr(self, '_db') or self._db is None:
|
74 |
-
raise ConnectionError("Failed to initialize MongoDB database.")
|
75 |
-
return self._db
|
76 |
-
|
77 |
async def ping(self: Self) -> bool:
|
78 |
"""Check if MongoDB connection is alive."""
|
79 |
try:
|
80 |
-
|
81 |
-
client = self.client
|
82 |
-
|
83 |
-
# Try a simple ping command
|
84 |
-
await client.admin.command('ping')
|
85 |
logger.debug("MongoDB connection is active!")
|
86 |
return True
|
87 |
except (ConnectionFailure, ServerSelectionTimeoutError) as e:
|
88 |
logger.error("MongoDB connection failed: {}", e)
|
89 |
-
return False
|
90 |
except Exception as e:
|
91 |
logger.error("Unexpected error during MongoDB ping: {}", e)
|
92 |
-
|
93 |
|
94 |
-
async def get_collection(self: Self, name: str) ->
|
95 |
"""
|
96 |
-
Get a collection by name
|
97 |
-
Creates the collection if it doesn't exist.
|
98 |
"""
|
99 |
-
# First ensure we can connect at all
|
100 |
if not await self.ping():
|
101 |
logger.error("Cannot get collection '{}' because a MongoDB connection is not available.", name)
|
102 |
raise ConnectionError("MongoDB connection is not available.")
|
103 |
|
104 |
try:
|
105 |
-
# Get all collection names to check if this one exists
|
106 |
logger.debug("Checking if collection '{}' exists…", name)
|
107 |
-
collection_names = await self.
|
108 |
|
109 |
if name not in collection_names:
|
110 |
logger.info("Collection '{}' does not exist. Creating it…", name)
|
111 |
-
|
112 |
-
|
|
|
113 |
logger.debug("Successfully created collection: {}", name)
|
114 |
else:
|
115 |
logger.debug("Collection '{}' already exists!", name)
|
116 |
|
117 |
-
# Get and return the collection
|
118 |
-
collection = self.
|
119 |
return collection
|
120 |
except Exception as e:
|
121 |
logger.error("Error accessing collection '{}': {}", name, e)
|
122 |
raise
|
123 |
|
124 |
-
|
125 |
-
"""
|
126 |
-
Create a vector search index on a collection.
|
127 |
-
|
128 |
-
Args:
|
129 |
-
collection_name: Name of the collection
|
130 |
-
"""
|
131 |
-
collection = await self.get_collection(collection_name)
|
132 |
-
|
133 |
-
try:
|
134 |
-
# Create search index model using MongoDB's recommended approach
|
135 |
-
search_index_model = SearchIndexModel(
|
136 |
-
definition={
|
137 |
-
"fields": [
|
138 |
-
{
|
139 |
-
"type": "vector",
|
140 |
-
"path": "embedding",
|
141 |
-
"numDimensions": self.settings.VECTOR_DIMENSION,
|
142 |
-
"similarity": "cosine",
|
143 |
-
"quantization": "scalar"
|
144 |
-
}
|
145 |
-
]
|
146 |
-
},
|
147 |
-
name=f"{collection_name}_vector_index",
|
148 |
-
type="vectorSearch"
|
149 |
-
)
|
150 |
-
|
151 |
-
# Create the search index using the motor collection
|
152 |
-
result = await collection.create_search_index(search_index_model)
|
153 |
-
logger.info("Vector search index '{}' created for collection {}.", result, collection_name)
|
154 |
-
|
155 |
-
except Exception as e:
|
156 |
-
if "command not found" in str(e).lower():
|
157 |
-
logger.warning("Vector search not supported by this MongoDB instance. Some functionality may be limited.")
|
158 |
-
# Create a fallback standard index on embedding field
|
159 |
-
await collection.create_index("embedding")
|
160 |
-
logger.info("Created standard index on 'embedding' field as fallback.")
|
161 |
-
else:
|
162 |
-
logger.error("Failed to create vector index: {}", e)
|
163 |
-
raise
|
164 |
-
|
165 |
-
async def close(self: Self) -> None:
|
166 |
-
"""Close MongoDB connection."""
|
167 |
if self._client:
|
168 |
self._client.close()
|
169 |
logger.info("Closed MongoDB connection.")
|
@@ -193,6 +127,6 @@ class MongoDBResource(AsyncResource):
|
|
193 |
async def shutdown(self: Self, mongo_db: MongoDB) -> None:
|
194 |
"""Close MongoDB connection on shutdown."""
|
195 |
try:
|
196 |
-
|
197 |
except Exception as e:
|
198 |
logger.error("Error closing MongoDB connection: {}", e)
|
|
|
|
|
1 |
from dependency_injector.resources import AsyncResource
|
2 |
+
from motor.motor_asyncio import AsyncIOMotorClient, AsyncIOMotorCollection
|
3 |
from pymongo.errors import ConnectionFailure, ServerSelectionTimeoutError
|
|
|
4 |
from loguru import logger
|
5 |
from pydantic import BaseModel, PrivateAttr
|
6 |
+
from typing import Any, Dict, Self
|
7 |
|
8 |
from ctp_slack_bot.core.config import Settings
|
9 |
from ctp_slack_bot.utils import sanitize_mongo_db_uri
|
10 |
|
11 |
+
|
12 |
class MongoDB(BaseModel):
|
13 |
"""
|
14 |
MongoDB connection manager using Motor for async operations.
|
|
|
18 |
_db: PrivateAttr = PrivateAttr()
|
19 |
|
20 |
class Config:
|
21 |
+
frozen=True
|
22 |
arbitrary_types_allowed = True
|
23 |
|
24 |
def __init__(self: Self, **data: Dict[str, Any]) -> None:
|
|
|
31 |
connection_string = self.settings.MONGODB_URI.get_secret_value()
|
32 |
logger.debug("Connecting to MongoDB using URI: {}", sanitize_mongo_db_uri(connection_string))
|
33 |
|
34 |
+
# Create client with appropriate settings.
|
35 |
self._client = AsyncIOMotorClient(
|
36 |
connection_string,
|
37 |
serverSelectionTimeoutMS=5000,
|
|
|
42 |
w="majority"
|
43 |
)
|
44 |
|
45 |
+
# Get the database name.
|
46 |
db_name = self.settings.MONGODB_NAME
|
47 |
|
48 |
self._db = self._client[db_name]
|
|
|
54 |
self._db = None
|
55 |
raise
|
56 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
57 |
async def ping(self: Self) -> bool:
|
58 |
"""Check if MongoDB connection is alive."""
|
59 |
try:
|
60 |
+
await self._client.admin.command("ping")
|
|
|
|
|
|
|
|
|
61 |
logger.debug("MongoDB connection is active!")
|
62 |
return True
|
63 |
except (ConnectionFailure, ServerSelectionTimeoutError) as e:
|
64 |
logger.error("MongoDB connection failed: {}", e)
|
|
|
65 |
except Exception as e:
|
66 |
logger.error("Unexpected error during MongoDB ping: {}", e)
|
67 |
+
return False
|
68 |
|
69 |
+
async def get_collection(self: Self, name: str) -> AsyncIOMotorCollection:
|
70 |
"""
|
71 |
+
Get a collection by name or creates it if it doesn’t exist.
|
|
|
72 |
"""
|
73 |
+
# First ensure we can connect at all.
|
74 |
if not await self.ping():
|
75 |
logger.error("Cannot get collection '{}' because a MongoDB connection is not available.", name)
|
76 |
raise ConnectionError("MongoDB connection is not available.")
|
77 |
|
78 |
try:
|
79 |
+
# Get all collection names to check if this one exists.
|
80 |
logger.debug("Checking if collection '{}' exists…", name)
|
81 |
+
collection_names = await self._db.list_collection_names()
|
82 |
|
83 |
if name not in collection_names:
|
84 |
logger.info("Collection '{}' does not exist. Creating it…", name)
|
85 |
+
|
86 |
+
# Create the collection.
|
87 |
+
await self._db.create_collection(name)
|
88 |
logger.debug("Successfully created collection: {}", name)
|
89 |
else:
|
90 |
logger.debug("Collection '{}' already exists!", name)
|
91 |
|
92 |
+
# Get and return the collection.
|
93 |
+
collection = self._db[name]
|
94 |
return collection
|
95 |
except Exception as e:
|
96 |
logger.error("Error accessing collection '{}': {}", name, e)
|
97 |
raise
|
98 |
|
99 |
+
def close(self: Self) -> None:
|
100 |
+
"""Close the MongoDB connection."""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
101 |
if self._client:
|
102 |
self._client.close()
|
103 |
logger.info("Closed MongoDB connection.")
|
|
|
127 |
async def shutdown(self: Self, mongo_db: MongoDB) -> None:
|
128 |
"""Close MongoDB connection on shutdown."""
|
129 |
try:
|
130 |
+
mongo_db.close()
|
131 |
except Exception as e:
|
132 |
logger.error("Error closing MongoDB connection: {}", e)
|
src/ctp_slack_bot/db/repositories/__init__.py
CHANGED
@@ -1,2 +1,3 @@
|
|
1 |
from ctp_slack_bot.db.repositories.mongo_db_vectorized_chunk_repository import MongoVectorizedChunkRepository
|
2 |
from ctp_slack_bot.db.repositories.vectorized_chunk_repository import VectorizedChunkRepository
|
|
|
|
1 |
from ctp_slack_bot.db.repositories.mongo_db_vectorized_chunk_repository import MongoVectorizedChunkRepository
|
2 |
from ctp_slack_bot.db.repositories.vectorized_chunk_repository import VectorizedChunkRepository
|
3 |
+
from ctp_slack_bot.db.repositories.vector_repository_base import VectorRepositoryBase
|
src/ctp_slack_bot/db/repositories/mongo_db_vectorized_chunk_repository.py
CHANGED
@@ -1,65 +1,161 @@
|
|
1 |
-
from
|
2 |
-
import
|
3 |
-
from
|
|
|
4 |
|
5 |
-
from ctp_slack_bot.
|
|
|
|
|
6 |
from ctp_slack_bot.db.repositories.vectorized_chunk_repository import VectorizedChunkRepository
|
7 |
-
from ctp_slack_bot.
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
cursor
|
26 |
-
|
27 |
-
|
28 |
-
|
|
|
|
|
|
|
|
|
29 |
cursor = self.collection.find({"parent_id": parent_id})
|
30 |
-
return [
|
31 |
-
|
32 |
-
async def
|
33 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
34 |
|
35 |
-
|
36 |
-
|
37 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
else:
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
|
45 |
-
|
46 |
-
|
47 |
-
|
48 |
-
|
49 |
-
|
50 |
-
|
51 |
-
|
52 |
-
|
53 |
-
|
54 |
-
|
55 |
-
def _map_to_document(self, chunk: VectorizedChunk) -> Dict[str, Any]:
|
56 |
-
"""Convert a VectorizedChunk to a MongoDB document."""
|
57 |
-
doc = chunk.model_dump()
|
58 |
-
# Handle any special conversions needed
|
59 |
-
return doc
|
60 |
-
|
61 |
-
def _map_to_entity(self, doc: Dict[str, Any]) -> VectorizedChunk:
|
62 |
-
"""Convert a MongoDB document to a VectorizedChunk."""
|
63 |
-
if "_id" in doc:
|
64 |
-
doc["id"] = str(doc.pop("_id"))
|
65 |
-
return VectorizedChunk(**doc)
|
|
|
1 |
+
from dependency_injector.resources import AsyncResource
|
2 |
+
from loguru import logger
|
3 |
+
from pymongo import ASCENDING, ReturnDocument
|
4 |
+
from typing import Any, Collection, Dict, Iterable, Mapping, Optional, Self, Sequence, Set
|
5 |
|
6 |
+
from ctp_slack_bot.core import Settings
|
7 |
+
from ctp_slack_bot.models import Chunk, VectorizedChunk, VectorQuery
|
8 |
+
from ctp_slack_bot.db.mongo_db import MongoDB
|
9 |
from ctp_slack_bot.db.repositories.vectorized_chunk_repository import VectorizedChunkRepository
|
10 |
+
from ctp_slack_bot.db.repositories.vector_repository_base import VectorRepositoryBase
|
11 |
+
|
12 |
+
|
13 |
+
class MongoVectorizedChunkRepository(VectorRepositoryBase, VectorizedChunkRepository):
|
14 |
+
"""MongoDB implementation of VectorizedChunkRepository"""
|
15 |
+
|
16 |
+
def __init__(self: Self, **data: Dict[str, Any]) -> None:
|
17 |
+
super().__init__(**data)
|
18 |
+
logger.debug("Created {}", self.__class__.__name__)
|
19 |
+
|
20 |
+
async def count_by_id(self: Self, parent_id: str, chunk_id: Optional[str] = None) -> int:
|
21 |
+
if chunk_id is None:
|
22 |
+
return await self.collection.count_documents({"parent_id": parent_id})
|
23 |
+
else:
|
24 |
+
return await self.collection.count_documents({"parent_id": parent_id, "chunk_id": chunk_id})
|
25 |
+
|
26 |
+
async def find_all(self: Self) -> Collection[VectorizedChunk]:
|
27 |
+
cursor = self.collection.find()
|
28 |
+
return [VectorizedChunk(**document) async for document in cursor] # TODO: mutable until async support is extended to tuples
|
29 |
+
|
30 |
+
async def find_by_metadata(self: Self, metadata_query: Mapping[str, Any]) -> Collection[VectorizedChunk]:
|
31 |
+
query = {f"metadata.{key}": value for key, value in metadata_query.items()}
|
32 |
+
cursor = self.collection.find(query)
|
33 |
+
return [VectorizedChunk(**document) async for document in cursor] # TODO: mutable until async support is extended to tuples
|
34 |
+
|
35 |
+
async def find_by_parent_id(self: Self, parent_id: str) -> Collection[VectorizedChunk]:
|
36 |
cursor = self.collection.find({"parent_id": parent_id})
|
37 |
+
return [VectorizedChunk(**document) async for document in cursor] # TODO: mutable until async support is extended to tuples
|
38 |
+
|
39 |
+
async def find_by_parent_and_chunk_ids(self: Self, parent_id: str, chunk_id: str) -> Optional[VectorizedChunk]:
|
40 |
+
document = await self.collection.find_one({"parent_id": parent_id, "chunk_id": chunk_id})
|
41 |
+
return VectorizedChunk(**document) if document else None
|
42 |
+
|
43 |
+
async def find_by_vector(self: Self, query_embedding: Sequence[float], k: int = 5, score_threshold: float = 0.7) -> Sequence[VectorizedChunk]:
|
44 |
+
pipeline = [
|
45 |
+
{
|
46 |
+
"$vectorSearch": {
|
47 |
+
"index": "vector_index",
|
48 |
+
"path": "embedding",
|
49 |
+
"queryVector": query_embedding,
|
50 |
+
"numCandidates": k * 2,
|
51 |
+
"limit": k,
|
52 |
+
"score": {"$meta": "vectorSearchScore"}
|
53 |
+
}
|
54 |
+
},
|
55 |
+
{"$match": {"score": {"$gte": score_threshold}}}
|
56 |
+
]
|
57 |
+
cursor = self.collection.aggregate(pipeline)
|
58 |
+
return [VectorizedChunk(**document) async for document in cursor] # TODO: mutable until async support is extended to tuples
|
59 |
+
|
60 |
+
async def find_by_vector(self: Self, query: VectorQuery) -> Sequence[Chunk]:
|
61 |
+
"""
|
62 |
+
Query the vector database for similar documents.
|
63 |
|
64 |
+
Args:
|
65 |
+
query: VectorQuery object with search parameters
|
66 |
+
|
67 |
+
Returns:
|
68 |
+
Sequence[Chunk]: List of similar chunks
|
69 |
+
"""
|
70 |
+
# Build aggregation pipeline for vector search using official MongoDB format.
|
71 |
+
pipeline = [
|
72 |
+
{
|
73 |
+
"$vectorSearch": {
|
74 |
+
"index": f"{self.collection.name}_vector_index",
|
75 |
+
"path": "embedding",
|
76 |
+
"queryVector": query.query_embeddings,
|
77 |
+
"numCandidates": query.k * 10,
|
78 |
+
"limit": query.k
|
79 |
+
}
|
80 |
+
},
|
81 |
+
{
|
82 |
+
"$project": {
|
83 |
+
"text": 1,
|
84 |
+
"metadata": 1,
|
85 |
+
"parent_id": 1,
|
86 |
+
"chunk_id": 1,
|
87 |
+
"score": { "$meta": "vectorSearchScore" }
|
88 |
+
}
|
89 |
+
},
|
90 |
+
{
|
91 |
+
"$match": {
|
92 |
+
"score": { "$gte": query.score_threshold }
|
93 |
+
}
|
94 |
+
}
|
95 |
+
]
|
96 |
+
if query.filter_metadata: # Add metadata filters if provided.
|
97 |
+
metadata_filter = {f"metadata.{key}": value for key, value in query.filter_metadata.items()}
|
98 |
+
pipeline.insert(1, {"$match": metadata_filter})
|
99 |
+
|
100 |
+
# Execute the vector search pipeline.
|
101 |
+
results = await self.collection.aggregate(pipeline).to_list(length=query.k)
|
102 |
+
|
103 |
+
# Convert results to Chunk objects ― don’t care about the embeddings.
|
104 |
+
return tuple(Chunk(text=result["text"],
|
105 |
+
parent_id=result["parent_id"],
|
106 |
+
chunk_id=result["chunk_id"],
|
107 |
+
metadata={**result["metadata"], "similarity_score": result.get("score", 0)})
|
108 |
+
for result
|
109 |
+
in results)
|
110 |
+
|
111 |
+
async def insert_one(self, chunk: VectorizedChunk) -> str:
|
112 |
+
document = chunk.model_dump()
|
113 |
+
result = await self.collection.insert_one(document)
|
114 |
+
return str(result.inserted_id)
|
115 |
+
|
116 |
+
async def insert_many(self, chunks: Iterable[VectorizedChunk]) -> Set[str]:
|
117 |
+
documents = [chunk.model_dump() for chunk in chunks]
|
118 |
+
result = await self.collection.insert_many(documents)
|
119 |
+
return frozenset(map(str, result.inserted_ids))
|
120 |
+
|
121 |
+
async def replace_all(self: Self, chunks: Iterable[VectorizedChunk]) -> Set[str]:
|
122 |
+
parent_ids = set()
|
123 |
+
documents = []
|
124 |
+
for chunk in chunks:
|
125 |
+
parent_ids.add(chunk.parent_id)
|
126 |
+
documents.append(chunk.model_dump())
|
127 |
+
async with await self.collection.database.client.start_session() as session:
|
128 |
+
async with session.start_transaction():
|
129 |
+
delete_result = await self.collection.delete_many({"parent_id": {"$in": tuple(parent_ids)}}, session=session)
|
130 |
+
insert_result = await self.collection.insert_many(documents, session=session)
|
131 |
+
return frozenset(map(str, insert_result.inserted_ids))
|
132 |
+
|
133 |
+
async def replace_one(self: Self, chunk: VectorizedChunk) -> str:
|
134 |
+
result = await self.collection.find_one_and_replace(
|
135 |
+
{"parent_id": chunk.parent_id, "chunk_id": chunk.chunk_id},
|
136 |
+
chunk.model_dump(),
|
137 |
+
upsert=True,
|
138 |
+
return_document=ReturnDocument.AFTER
|
139 |
+
)
|
140 |
+
return result["_id"]
|
141 |
+
|
142 |
+
async def delete(self: Self, parent_id: str, chunk_id: Optional[str] = None) -> int:
|
143 |
+
if chunk_id is not None:
|
144 |
+
result = await self.collection.delete_one({"parent_id": parent_id, "chunk_id": chunk_id})
|
145 |
else:
|
146 |
+
result = await self.collection.delete_many({"parent_id": parent_id})
|
147 |
+
return result.deleted_count
|
148 |
+
|
149 |
+
async def ensure_indices_exist(self: Self) -> None:
|
150 |
+
await super().ensure_indices_exist()
|
151 |
+
index_name = "parent_chunk_unique"
|
152 |
+
existing_indices = await self.collection.index_information()
|
153 |
+
if index_name not in existing_indices:
|
154 |
+
await self.collection.create_index([("parent_id", ASCENDING), ("chunk_id", ASCENDING)], unique=True, name=index_name)
|
155 |
+
|
156 |
+
class MongoVectorizedChunkRepositoryResource(AsyncResource):
|
157 |
+
async def init(self: Self, settings: Settings, mongo_db: MongoDB) -> MongoVectorizedChunkRepository:
|
158 |
+
vectorized_chunk_collection = await mongo_db.get_collection("vectorized_chunks")
|
159 |
+
vectorized_chunk_repository = MongoVectorizedChunkRepository(settings=settings, collection=vectorized_chunk_collection)
|
160 |
+
await vectorized_chunk_repository.ensure_indices_exist()
|
161 |
+
return vectorized_chunk_repository
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
src/ctp_slack_bot/db/repositories/vector_repository_base.py
ADDED
@@ -0,0 +1,62 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from abc import ABC
|
2 |
+
from loguru import logger
|
3 |
+
from motor.motor_asyncio import AsyncIOMotorCollection
|
4 |
+
from pydantic import BaseModel
|
5 |
+
from pymongo.operations import SearchIndexModel
|
6 |
+
from typing import Self
|
7 |
+
|
8 |
+
from ctp_slack_bot.core import Settings
|
9 |
+
|
10 |
+
class VectorRepositoryBase(ABC, BaseModel):
|
11 |
+
"""MongoDB implementation of VectorizedChunkRepository"""
|
12 |
+
|
13 |
+
settings: Settings
|
14 |
+
collection: AsyncIOMotorCollection
|
15 |
+
|
16 |
+
class Config:
|
17 |
+
frozen=True
|
18 |
+
arbitrary_types_allowed = True
|
19 |
+
|
20 |
+
async def ensure_indices_exist(self: Self) -> None:
|
21 |
+
"""Ensure that indices exist."""
|
22 |
+
await self.ensure_search_index_exists()
|
23 |
+
|
24 |
+
async def ensure_search_index_exists(self: Self) -> None:
|
25 |
+
"""
|
26 |
+
Ensure that a vector search index exists.
|
27 |
+
"""
|
28 |
+
index_name = f"{self.collection.name}_vector_index"
|
29 |
+
try:
|
30 |
+
existing_indexes = [index["name"] async for index in self.collection.list_search_indexes()]
|
31 |
+
logger.debug("{} existing indices were found: {}", len(existing_indexes), existing_indexes)
|
32 |
+
if index_name in existing_indexes:
|
33 |
+
logger.debug("Index '{}' already exists; duplicate index will not be created.", index_name)
|
34 |
+
return
|
35 |
+
|
36 |
+
# Create search index model using MongoDB's recommended approach.
|
37 |
+
search_index_model = SearchIndexModel(
|
38 |
+
definition={
|
39 |
+
"fields": [
|
40 |
+
{
|
41 |
+
"type": "vector",
|
42 |
+
"path": "embedding",
|
43 |
+
"numDimensions": self.settings.VECTOR_DIMENSION,
|
44 |
+
"similarity": "cosine",
|
45 |
+
"quantization": "scalar"
|
46 |
+
}
|
47 |
+
]
|
48 |
+
},
|
49 |
+
name=index_name,
|
50 |
+
type="vectorSearch"
|
51 |
+
)
|
52 |
+
result = await self.collection.create_search_index(search_index_model)
|
53 |
+
logger.info("Vector search index '{}' created for collection {}.", result, self.collection.name)
|
54 |
+
except Exception as e:
|
55 |
+
if "command not found" in str(e).lower():
|
56 |
+
logger.warning("Vector search not supported by this MongoDB instance. Some functionality may be limited.")
|
57 |
+
# Create a fallback standard index on embedding field.
|
58 |
+
await self.collection.create_index("embedding")
|
59 |
+
logger.info("Created standard index on 'embedding' field as fallback.")
|
60 |
+
else:
|
61 |
+
logger.error("Failed to create vector index: {}", e)
|
62 |
+
raise
|
src/ctp_slack_bot/db/repositories/vectorized_chunk_repository.py
CHANGED
@@ -1,30 +1,52 @@
|
|
1 |
-
from
|
|
|
|
|
2 |
|
3 |
-
from ctp_slack_bot.models
|
4 |
|
5 |
-
class VectorizedChunkRepository:
|
6 |
"""Repository interface for VectorizedChunk entities."""
|
7 |
|
8 |
-
|
9 |
-
|
10 |
pass
|
11 |
|
12 |
-
|
13 |
-
|
14 |
pass
|
15 |
|
16 |
-
|
17 |
-
|
18 |
pass
|
19 |
|
20 |
-
|
21 |
-
|
22 |
pass
|
23 |
|
24 |
-
|
25 |
-
|
26 |
pass
|
27 |
|
28 |
-
|
29 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
30 |
pass
|
|
|
1 |
+
from abc import ABC, abstractmethod
|
2 |
+
from pydantic import BaseModel
|
3 |
+
from typing import Any, Collection, Iterable, Mapping, Optional, Self, Sequence, Set
|
4 |
|
5 |
+
from ctp_slack_bot.models import Chunk, VectorizedChunk, VectorQuery
|
6 |
|
7 |
+
class VectorizedChunkRepository(ABC, BaseModel):
|
8 |
"""Repository interface for VectorizedChunk entities."""
|
9 |
|
10 |
+
@abstractmethod
|
11 |
+
async def count_by_id(self: Self, parent_id: str, chunk_id: Optional[str] = None) -> int:
|
12 |
pass
|
13 |
|
14 |
+
@abstractmethod
|
15 |
+
async def find_all(self: Self) -> Collection[VectorizedChunk]:
|
16 |
pass
|
17 |
|
18 |
+
@abstractmethod
|
19 |
+
async def find_by_metadata(self: Self, metadata_query: Mapping[str, Any]) -> Collection[VectorizedChunk]:
|
20 |
pass
|
21 |
|
22 |
+
@abstractmethod
|
23 |
+
async def find_by_parent_id(self: Self, parent_id: str) -> Collection[VectorizedChunk]:
|
24 |
pass
|
25 |
|
26 |
+
@abstractmethod
|
27 |
+
async def find_by_parent_and_chunk_ids(self: Self, parent_id: str, chunk_id: str) -> Optional[VectorizedChunk]:
|
28 |
pass
|
29 |
|
30 |
+
@abstractmethod
|
31 |
+
async def find_by_vector(self: Self, query: VectorQuery) -> Sequence[Chunk]:
|
32 |
+
pass
|
33 |
+
|
34 |
+
@abstractmethod
|
35 |
+
async def insert_one(self, chunk: VectorizedChunk) -> str:
|
36 |
+
pass
|
37 |
+
|
38 |
+
@abstractmethod
|
39 |
+
async def insert_many(self, chunks: Iterable[VectorizedChunk]) -> Set[str]:
|
40 |
+
pass
|
41 |
+
|
42 |
+
@abstractmethod
|
43 |
+
async def replace_all(self: Self, chunks: Iterable[VectorizedChunk]) -> Set[str]:
|
44 |
+
pass
|
45 |
+
|
46 |
+
@abstractmethod
|
47 |
+
async def replace_one(self: Self, chunk: VectorizedChunk) -> str:
|
48 |
+
pass
|
49 |
+
|
50 |
+
@abstractmethod
|
51 |
+
async def delete(self: Self, parent_id: str, chunk_id: Optional[str] = None) -> int:
|
52 |
pass
|
src/ctp_slack_bot/models/base.py
CHANGED
@@ -1,6 +1,8 @@
|
|
1 |
from abc import ABC, abstractmethod
|
2 |
-
from pydantic import BaseModel, ConfigDict, Field
|
3 |
-
from typing import Any, final, Mapping,
|
|
|
|
|
4 |
|
5 |
|
6 |
class Chunk(BaseModel):
|
@@ -9,10 +11,15 @@ class Chunk(BaseModel):
|
|
9 |
text: str # The text representation
|
10 |
parent_id: str # The source content’s identity
|
11 |
chunk_id: str # This chunk’s identity—unique within the source content
|
12 |
-
metadata: Mapping[str, Any]
|
13 |
|
14 |
model_config = ConfigDict(frozen=True)
|
15 |
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
@final
|
18 |
class VectorQuery(BaseModel):
|
@@ -25,19 +32,24 @@ class VectorQuery(BaseModel):
|
|
25 |
filter_metadata: Optional filters for metadata fields
|
26 |
"""
|
27 |
|
28 |
-
query_embeddings:
|
29 |
k: int
|
30 |
score_threshold: float = Field(default=0.7)
|
31 |
-
filter_metadata:
|
32 |
|
33 |
model_config = ConfigDict(frozen=True)
|
34 |
|
|
|
|
|
|
|
|
|
|
|
35 |
|
36 |
@final
|
37 |
class VectorizedChunk(Chunk):
|
38 |
"""A class representing a vectorized chunk of content."""
|
39 |
|
40 |
-
embedding:
|
41 |
|
42 |
|
43 |
class Content(ABC, BaseModel):
|
@@ -50,7 +62,7 @@ class Content(ABC, BaseModel):
|
|
50 |
pass
|
51 |
|
52 |
@abstractmethod
|
53 |
-
def get_chunks(self: Self) ->
|
54 |
pass
|
55 |
|
56 |
@abstractmethod
|
|
|
1 |
from abc import ABC, abstractmethod
|
2 |
+
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
3 |
+
from typing import Any, final, Mapping, Optional, Self
|
4 |
+
|
5 |
+
from ctp_slack_bot.utils import to_deep_immutable
|
6 |
|
7 |
|
8 |
class Chunk(BaseModel):
|
|
|
11 |
text: str # The text representation
|
12 |
parent_id: str # The source content’s identity
|
13 |
chunk_id: str # This chunk’s identity—unique within the source content
|
14 |
+
metadata: Mapping[str, Any] = Field(default_factory=dict)
|
15 |
|
16 |
model_config = ConfigDict(frozen=True)
|
17 |
|
18 |
+
@field_validator('metadata')
|
19 |
+
@classmethod
|
20 |
+
def __make_metadata_readonly(cls, value: Mapping[str, Any]) -> Mapping[str, Any]:
|
21 |
+
return to_deep_immutable(value)
|
22 |
+
|
23 |
|
24 |
@final
|
25 |
class VectorQuery(BaseModel):
|
|
|
32 |
filter_metadata: Optional filters for metadata fields
|
33 |
"""
|
34 |
|
35 |
+
query_embeddings: tuple[float, ...]
|
36 |
k: int
|
37 |
score_threshold: float = Field(default=0.7)
|
38 |
+
filter_metadata: Mapping[str, Any] = Field(default_factory=dict)
|
39 |
|
40 |
model_config = ConfigDict(frozen=True)
|
41 |
|
42 |
+
@field_validator('filter_metadata')
|
43 |
+
@classmethod
|
44 |
+
def __make_metadata_readonly(cls, value: Mapping[str, Any]) -> Mapping[str, Any]:
|
45 |
+
return to_deep_immutable(value)
|
46 |
+
|
47 |
|
48 |
@final
|
49 |
class VectorizedChunk(Chunk):
|
50 |
"""A class representing a vectorized chunk of content."""
|
51 |
|
52 |
+
embedding: tuple[float, ...] # The vector representation
|
53 |
|
54 |
|
55 |
class Content(ABC, BaseModel):
|
|
|
62 |
pass
|
63 |
|
64 |
@abstractmethod
|
65 |
+
def get_chunks(self: Self) -> tuple[Chunk, ...]:
|
66 |
pass
|
67 |
|
68 |
@abstractmethod
|
src/ctp_slack_bot/models/slack.py
CHANGED
@@ -2,7 +2,7 @@ from datetime import datetime
|
|
2 |
from json import dumps
|
3 |
from pydantic import BaseModel, ConfigDict, PositiveInt, PrivateAttr
|
4 |
from types import MappingProxyType
|
5 |
-
from typing import Any,
|
6 |
|
7 |
from ctp_slack_bot.models.base import Chunk, Content
|
8 |
|
@@ -23,7 +23,7 @@ class SlackEvent(BaseModel):
|
|
23 |
type: str
|
24 |
event_id: str
|
25 |
event_time: int
|
26 |
-
authed_users:
|
27 |
|
28 |
model_config = ConfigDict(frozen=True)
|
29 |
|
@@ -40,7 +40,7 @@ class SlackReaction(BaseModel):
|
|
40 |
|
41 |
name: str
|
42 |
count: PositiveInt
|
43 |
-
users:
|
44 |
|
45 |
model_config = ConfigDict(frozen=True)
|
46 |
|
@@ -61,14 +61,14 @@ class SlackMessage(Content):
|
|
61 |
deleted_ts: Optional[str] = None
|
62 |
hidden: bool = False
|
63 |
is_starred: Optional[bool] = None
|
64 |
-
pinned_to: Optional[
|
65 |
-
reactions: Optional[
|
66 |
|
67 |
def get_id(self: Self) -> str:
|
68 |
"""Unique identifier for this message."""
|
69 |
return f"slack-message:{self.channel}:{self.ts}"
|
70 |
|
71 |
-
def get_chunks(self: Self) ->
|
72 |
return (Chunk(text=self.text, parent_id=self.get_id(), chunk_id="", metadata=self.get_metadata()), )
|
73 |
|
74 |
def get_metadata(self: Self) -> Mapping[str, Any]:
|
|
|
2 |
from json import dumps
|
3 |
from pydantic import BaseModel, ConfigDict, PositiveInt, PrivateAttr
|
4 |
from types import MappingProxyType
|
5 |
+
from typing import Any, Literal, Mapping, Optional, Self
|
6 |
|
7 |
from ctp_slack_bot.models.base import Chunk, Content
|
8 |
|
|
|
23 |
type: str
|
24 |
event_id: str
|
25 |
event_time: int
|
26 |
+
authed_users: tuple[str, ...]
|
27 |
|
28 |
model_config = ConfigDict(frozen=True)
|
29 |
|
|
|
40 |
|
41 |
name: str
|
42 |
count: PositiveInt
|
43 |
+
users: tuple[str, ...]
|
44 |
|
45 |
model_config = ConfigDict(frozen=True)
|
46 |
|
|
|
61 |
deleted_ts: Optional[str] = None
|
62 |
hidden: bool = False
|
63 |
is_starred: Optional[bool] = None
|
64 |
+
pinned_to: Optional[tuple[str, ...]] = None
|
65 |
+
reactions: Optional[tuple[SlackReaction, ...]] = None
|
66 |
|
67 |
def get_id(self: Self) -> str:
|
68 |
"""Unique identifier for this message."""
|
69 |
return f"slack-message:{self.channel}:{self.ts}"
|
70 |
|
71 |
+
def get_chunks(self: Self) -> tuple[Chunk]:
|
72 |
return (Chunk(text=self.text, parent_id=self.get_id(), chunk_id="", metadata=self.get_metadata()), )
|
73 |
|
74 |
def get_metadata(self: Self) -> Mapping[str, Any]:
|
src/ctp_slack_bot/models/webvtt.py
CHANGED
@@ -1,14 +1,13 @@
|
|
1 |
from datetime import datetime, timedelta
|
2 |
from io import BytesIO
|
3 |
-
from itertools import starmap
|
4 |
-
from json import dumps
|
5 |
from more_itertools import windowed
|
6 |
-
from pydantic import BaseModel, ConfigDict, Field,
|
7 |
from types import MappingProxyType
|
8 |
-
from typing import Any,
|
9 |
from webvtt import Caption, WebVTT
|
10 |
|
11 |
from ctp_slack_bot.models.base import Chunk, Content
|
|
|
12 |
|
13 |
|
14 |
CHUNK_FRAMES_OVERLAP = 1
|
@@ -45,12 +44,12 @@ class WebVTTContent(Content):
|
|
45 |
id: str
|
46 |
metadata: Mapping[str, Any] = Field(default_factory=dict)
|
47 |
start_time: Optional[datetime]
|
48 |
-
frames:
|
49 |
|
50 |
def get_id(self: Self) -> str:
|
51 |
return self.id
|
52 |
|
53 |
-
def get_chunks(self: Self) ->
|
54 |
windows = (tuple(filter(None, window))
|
55 |
for window
|
56 |
in windowed(self.frames, CHUNK_FRAMES_WINDOW, step=CHUNK_FRAMES_WINDOW-CHUNK_FRAMES_OVERLAP))
|
@@ -62,7 +61,7 @@ class WebVTTContent(Content):
|
|
62 |
metadata={
|
63 |
"start": self.start_time + frames[0].start if self.start_time else None,
|
64 |
"end": self.start_time + frames[-1].end if self.start_time else None,
|
65 |
-
"speakers":
|
66 |
})
|
67 |
for frames
|
68 |
in windows)
|
|
|
1 |
from datetime import datetime, timedelta
|
2 |
from io import BytesIO
|
|
|
|
|
3 |
from more_itertools import windowed
|
4 |
+
from pydantic import BaseModel, ConfigDict, Field, field_validator
|
5 |
from types import MappingProxyType
|
6 |
+
from typing import Any, Literal, Mapping, Optional, Self
|
7 |
from webvtt import Caption, WebVTT
|
8 |
|
9 |
from ctp_slack_bot.models.base import Chunk, Content
|
10 |
+
from ctp_slack_bot.utils import to_deep_immutable
|
11 |
|
12 |
|
13 |
CHUNK_FRAMES_OVERLAP = 1
|
|
|
44 |
id: str
|
45 |
metadata: Mapping[str, Any] = Field(default_factory=dict)
|
46 |
start_time: Optional[datetime]
|
47 |
+
frames: tuple[WebVTTFrame, ...]
|
48 |
|
49 |
def get_id(self: Self) -> str:
|
50 |
return self.id
|
51 |
|
52 |
+
def get_chunks(self: Self) -> tuple[Chunk]:
|
53 |
windows = (tuple(filter(None, window))
|
54 |
for window
|
55 |
in windowed(self.frames, CHUNK_FRAMES_WINDOW, step=CHUNK_FRAMES_WINDOW-CHUNK_FRAMES_OVERLAP))
|
|
|
61 |
metadata={
|
62 |
"start": self.start_time + frames[0].start if self.start_time else None,
|
63 |
"end": self.start_time + frames[-1].end if self.start_time else None,
|
64 |
+
"speakers": (frame.speaker for frame in frames if frame.speaker)
|
65 |
})
|
66 |
for frames
|
67 |
in windows)
|
src/ctp_slack_bot/services/content_ingestion_service.py
CHANGED
@@ -30,9 +30,9 @@ class ContentIngestionService(BaseModel):
|
|
30 |
|
31 |
async def process_incoming_content(self: Self, content: Content) -> None:
|
32 |
logger.debug("Content ingestion service received content with metadata: {}", content.get_metadata())
|
33 |
-
|
34 |
-
|
35 |
-
|
36 |
chunks = content.get_chunks()
|
37 |
await self.__vectorize_and_store_chunks_in_database(chunks)
|
38 |
logger.debug("Stored {} vectorized chunk(s) in the database.", len(chunks))
|
@@ -44,6 +44,5 @@ class ContentIngestionService(BaseModel):
|
|
44 |
logger.debug("Stored {} vectorized chunk(s) in the database.", len(chunks))
|
45 |
|
46 |
async def __vectorize_and_store_chunks_in_database(self: Self, chunks: Sequence[Chunk]) -> None:
|
47 |
-
vectorized_chunks = self.vectorization_service.vectorize(chunks)
|
48 |
-
await self.vector_database_service.store(vectorized_chunks)
|
49 |
-
|
|
|
30 |
|
31 |
async def process_incoming_content(self: Self, content: Content) -> None:
|
32 |
logger.debug("Content ingestion service received content with metadata: {}", content.get_metadata())
|
33 |
+
if self.vector_database_service.content_exists(content.get_id()):
|
34 |
+
logger.debug("Ignored content with identifier, {}, because it already exists in the database.", content.get_id())
|
35 |
+
return
|
36 |
chunks = content.get_chunks()
|
37 |
await self.__vectorize_and_store_chunks_in_database(chunks)
|
38 |
logger.debug("Stored {} vectorized chunk(s) in the database.", len(chunks))
|
|
|
44 |
logger.debug("Stored {} vectorized chunk(s) in the database.", len(chunks))
|
45 |
|
46 |
async def __vectorize_and_store_chunks_in_database(self: Self, chunks: Sequence[Chunk]) -> None:
|
47 |
+
vectorized_chunks = self.vectorization_service.vectorize(chunks)
|
48 |
+
await self.vector_database_service.store(vectorized_chunks)
|
|
src/ctp_slack_bot/services/context_retrieval_service.py
CHANGED
@@ -34,33 +34,23 @@ class ContextRetrievalService(BaseModel):
|
|
34 |
Returns:
|
35 |
Sequence[Chunk]: List of retrieved context items with similarity scores
|
36 |
"""
|
37 |
-
#
|
38 |
-
|
39 |
-
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
|
44 |
-
if not vectorized_chunks:
|
45 |
-
logger.warning("No vectorized chunks were created for message")
|
46 |
-
return []
|
47 |
-
|
48 |
query = VectorQuery(
|
49 |
-
query_embeddings=
|
50 |
k=self.settings.TOP_K_MATCHES,
|
51 |
score_threshold=self.settings.SCORE_THRESHOLD,
|
52 |
-
filter_metadata=
|
53 |
)
|
54 |
-
|
55 |
-
# Perform similarity search
|
56 |
try:
|
57 |
-
results = await self.vector_database_service.
|
58 |
-
# logger.info(f"Retrieved {len(results)} context chunks for query")
|
59 |
return results
|
60 |
except Exception as e:
|
61 |
-
logger.error(
|
62 |
-
return
|
63 |
-
|
64 |
-
# test return statement
|
65 |
-
# return (VectorizedChunk(text="Mock context chunk", parent_id="lol", chunk_id="no", metadata={}, embedding=tuple()),
|
66 |
-
# VectorizedChunk(text="Moar mock context chunk", parent_id="lol", chunk_id="wut", metadata={}, embedding=tuple()))
|
|
|
34 |
Returns:
|
35 |
Sequence[Chunk]: List of retrieved context items with similarity scores
|
36 |
"""
|
37 |
+
message_chunks = message.get_chunks() # Guaranteed to have exactly 1 chunk
|
38 |
+
|
39 |
+
try:
|
40 |
+
vectorized_message_chunks = self.vectorization_service.vectorize(message_chunks)
|
41 |
+
except Exception as e:
|
42 |
+
logger.error("An error occurred while vectorizing the question, “{}”: {}", message.text, e)
|
43 |
+
|
|
|
|
|
|
|
|
|
44 |
query = VectorQuery(
|
45 |
+
query_embeddings=vectorized_message_chunks[0].embedding,
|
46 |
k=self.settings.TOP_K_MATCHES,
|
47 |
score_threshold=self.settings.SCORE_THRESHOLD,
|
48 |
+
filter_metadata={} # Can be expanded to include filters based on message metadata
|
49 |
)
|
50 |
+
|
|
|
51 |
try:
|
52 |
+
results = await self.vector_database_service.find_by_vector(query)
|
|
|
53 |
return results
|
54 |
except Exception as e:
|
55 |
+
logger.error("An error occurred while searching the vector database for context: {}", e)
|
56 |
+
return ()
|
|
|
|
|
|
|
|
src/ctp_slack_bot/services/vector_database_service.py
CHANGED
@@ -1,17 +1,18 @@
|
|
1 |
from loguru import logger
|
2 |
from pydantic import BaseModel
|
3 |
-
from typing import
|
4 |
|
5 |
from ctp_slack_bot.core import Settings
|
6 |
-
from ctp_slack_bot.db import
|
7 |
from ctp_slack_bot.models import Chunk, VectorizedChunk, VectorQuery
|
8 |
|
9 |
class VectorDatabaseService(BaseModel): # TODO: this should not rely specifically on MongoDB.
|
10 |
"""
|
11 |
Service for storing and retrieving vector embeddings from MongoDB.
|
12 |
"""
|
|
|
13 |
settings: Settings
|
14 |
-
|
15 |
|
16 |
class Config:
|
17 |
frozen=True
|
@@ -19,157 +20,48 @@ class VectorDatabaseService(BaseModel): # TODO: this should not rely specificall
|
|
19 |
def __init__(self: Self, **data) -> None:
|
20 |
super().__init__(**data)
|
21 |
logger.debug("Created {}", self.__class__.__name__)
|
22 |
-
|
23 |
-
async def store(self: Self, chunks: Collection[VectorizedChunk]) -> None:
|
24 |
-
"""
|
25 |
-
Stores vectorized chunks and their embedding vectors in the database.
|
26 |
-
|
27 |
-
Args:
|
28 |
-
chunks: Collection of VectorizedChunk objects to store
|
29 |
-
|
30 |
-
Returns: None
|
31 |
-
"""
|
32 |
-
if not chunks:
|
33 |
-
logger.debug("No chunks to store")
|
34 |
-
return
|
35 |
-
|
36 |
-
try:
|
37 |
-
# Get the vector collection - this will create it if it doesn't exist
|
38 |
-
logger.debug("Getting vectors collection for storing {} chunks", len(chunks))
|
39 |
-
vector_collection = await self.mongo_db.get_collection("vectors")
|
40 |
-
|
41 |
-
# Ensure vector search index exists
|
42 |
-
logger.debug("Creating vector search index for vectors collection")
|
43 |
-
await self.mongo_db.create_indexes("vectors")
|
44 |
-
|
45 |
-
# Create documents to store, ensuring compatibility with BSON
|
46 |
-
documents = []
|
47 |
-
for chunk in chunks:
|
48 |
-
# Convert embedding to standard list format (important for BSON compatibility)
|
49 |
-
embedding = list(chunk.embedding) if not isinstance(chunk.embedding, list) else chunk.embedding
|
50 |
-
|
51 |
-
# Build document with proper structure
|
52 |
-
document = {
|
53 |
-
"text": chunk.text,
|
54 |
-
"embedding": embedding,
|
55 |
-
"metadata": chunk.metadata,
|
56 |
-
"parent_id": chunk.parent_id,
|
57 |
-
"chunk_id": chunk.chunk_id
|
58 |
-
}
|
59 |
-
documents.append(document)
|
60 |
-
|
61 |
-
# Insert into collection as a batch
|
62 |
-
logger.debug("Inserting {} documents into vectors collection", len(documents))
|
63 |
-
result = await vector_collection.insert_many(documents)
|
64 |
-
logger.info("Stored {} vector chunks in database", len(result.inserted_ids))
|
65 |
-
|
66 |
-
except Exception as e:
|
67 |
-
logger.error("Error storing vector embeddings: {}", str(e))
|
68 |
-
# Include more diagnostic information
|
69 |
-
logger.debug("MongoDB connection info: URI defined: {}, DB name: {}",
|
70 |
-
bool(self.settings.MONGODB_URI), self.settings.MONGODB_NAME)
|
71 |
-
raise
|
72 |
|
73 |
-
async def content_exists(self: Self,
|
74 |
"""
|
75 |
-
Check if content
|
76 |
|
77 |
Args:
|
78 |
-
|
|
|
79 |
"""
|
80 |
-
|
|
|
81 |
|
82 |
-
async def
|
83 |
"""
|
84 |
-
Query the vector database for similar
|
85 |
-
|
86 |
Args:
|
87 |
-
query:
|
88 |
|
89 |
Returns:
|
90 |
-
Sequence[Chunk]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
91 |
"""
|
92 |
try:
|
93 |
-
|
94 |
-
logger.debug("
|
95 |
-
vector_collection = await self.mongo_db.get_collection("vectors")
|
96 |
-
|
97 |
-
# Build aggregation pipeline for vector search using official MongoDB format
|
98 |
-
logger.debug("Building vector search pipeline with query embedding dimension: {}", len(query.query_embeddings))
|
99 |
-
pipeline = [
|
100 |
-
{
|
101 |
-
"$vectorSearch": {
|
102 |
-
"index": "vectors_vector_index",
|
103 |
-
"path": "embedding",
|
104 |
-
"queryVector": query.query_embeddings, #list(query.query_embeddings),
|
105 |
-
"numCandidates": query.k * 10,
|
106 |
-
"limit": query.k
|
107 |
-
}
|
108 |
-
},
|
109 |
-
{
|
110 |
-
"$project": {
|
111 |
-
"text": 1,
|
112 |
-
"metadata": 1,
|
113 |
-
"parent_id": 1,
|
114 |
-
"chunk_id": 1,
|
115 |
-
"score": { "$meta": "vectorSearchScore" }
|
116 |
-
}
|
117 |
-
}
|
118 |
-
]
|
119 |
-
|
120 |
-
# Add metadata filters if provided
|
121 |
-
if query.filter_metadata:
|
122 |
-
metadata_filter = {f"metadata.{k}": v for k, v in query.filter_metadata.items()}
|
123 |
-
pipeline.insert(1, {"$match": metadata_filter})
|
124 |
-
logger.debug("Added metadata filters to search: {}", query.filter_metadata)
|
125 |
-
|
126 |
-
# Add score threshold filter if needed
|
127 |
-
if query.score_threshold > 0:
|
128 |
-
pipeline.append({
|
129 |
-
"$match": {
|
130 |
-
"score": { "$gte": query.score_threshold }
|
131 |
-
}
|
132 |
-
})
|
133 |
-
logger.debug("Added score threshold filter: {}", query.score_threshold)
|
134 |
-
|
135 |
-
try:
|
136 |
-
# Execute the vector search pipeline
|
137 |
-
logger.debug("Executing vector search pipeline")
|
138 |
-
results = await vector_collection.aggregate(pipeline).to_list(length=query.k)
|
139 |
-
logger.debug("Vector search returned {} results", len(results))
|
140 |
-
except Exception as e:
|
141 |
-
logger.warning("Vector search failed: {}. Falling back to basic text search.", str(e))
|
142 |
-
# Fall back to basic filtering with limit
|
143 |
-
query_filter = {}
|
144 |
-
if query.filter_metadata:
|
145 |
-
query_filter.update({f"metadata.{k}": v for k, v in query.filter_metadata.items()})
|
146 |
-
|
147 |
-
logger.debug("Executing fallback basic search with filter: {}", query_filter)
|
148 |
-
results = await vector_collection.find(query_filter).limit(query.k).to_list(length=query.k)
|
149 |
-
logger.debug("Fallback search returned {} results", len(results))
|
150 |
-
|
151 |
-
# Convert results to Chunk objects
|
152 |
-
chunks = []
|
153 |
-
for result in results:
|
154 |
-
chunk = Chunk(
|
155 |
-
text=result["text"],
|
156 |
-
parent_id=result["parent_id"],
|
157 |
-
chunk_id=result["chunk_id"],
|
158 |
-
metadata={
|
159 |
-
**result["metadata"],
|
160 |
-
"similarity_score": result.get("score", 0)
|
161 |
-
}
|
162 |
-
)
|
163 |
-
chunks.append(chunk)
|
164 |
-
|
165 |
-
logger.info("Found {} similar chunks with similarity search", len(chunks))
|
166 |
-
return chunks
|
167 |
-
|
168 |
except Exception as e:
|
169 |
-
logger.error("Error
|
170 |
-
# Include additional diagnostic information
|
171 |
-
logger.debug("MongoDB connection info: URI defined: {}, DB name: {}",
|
172 |
-
bool(self.settings.MONGODB_URI), self.settings.MONGODB_NAME)
|
173 |
-
logger.debug("Query details: k={}, dimension={}",
|
174 |
-
query.k, len(query.query_embeddings) if query.query_embeddings else "None")
|
175 |
raise
|
|
|
1 |
from loguru import logger
|
2 |
from pydantic import BaseModel
|
3 |
+
from typing import Iterable, Optional, Self, Sequence
|
4 |
|
5 |
from ctp_slack_bot.core import Settings
|
6 |
+
from ctp_slack_bot.db.repositories import VectorizedChunkRepository
|
7 |
from ctp_slack_bot.models import Chunk, VectorizedChunk, VectorQuery
|
8 |
|
9 |
class VectorDatabaseService(BaseModel): # TODO: this should not rely specifically on MongoDB.
|
10 |
"""
|
11 |
Service for storing and retrieving vector embeddings from MongoDB.
|
12 |
"""
|
13 |
+
|
14 |
settings: Settings
|
15 |
+
vectorized_chunk_repository: VectorizedChunkRepository
|
16 |
|
17 |
class Config:
|
18 |
frozen=True
|
|
|
20 |
def __init__(self: Self, **data) -> None:
|
21 |
super().__init__(**data)
|
22 |
logger.debug("Created {}", self.__class__.__name__)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
async def content_exists(self: Self, parent_id: str, chunk_id: Optional[str] = None)-> bool:
|
25 |
"""
|
26 |
+
Check if the content identified by the parent and optionally the chunk identifiers exist in the database.
|
27 |
|
28 |
Args:
|
29 |
+
parent_id: the identifier of the source content
|
30 |
+
chunk_id: the identifier of the chunk within the source content
|
31 |
"""
|
32 |
+
matching_chunk_count = await self.vectorized_chunk_repository.count_by_id(parent_id, chunk_id)
|
33 |
+
return 0 < matching_chunk_count
|
34 |
|
35 |
+
async def find_by_vector(self: Self, query: VectorQuery) -> Sequence[Chunk]:
|
36 |
"""
|
37 |
+
Query the vector database for similar chunks.
|
38 |
+
|
39 |
Args:
|
40 |
+
query: the query criteria
|
41 |
|
42 |
Returns:
|
43 |
+
Sequence[Chunk]: an ordered collection of similar chunks
|
44 |
+
"""
|
45 |
+
try:
|
46 |
+
result = await self.vectorized_chunk_repository.find_by_vector(query)
|
47 |
+
logger.debug("Found {} chunks in the database by similarity search.", len(result))
|
48 |
+
return result
|
49 |
+
except Exception as e:
|
50 |
+
logger.error("Error finding chunks by vector: {}", str(e))
|
51 |
+
raise
|
52 |
+
|
53 |
+
async def store(self: Self, chunks: Iterable[VectorizedChunk]) -> None:
|
54 |
+
"""
|
55 |
+
Stores vectorized chunks and their embedding vectors in the database.
|
56 |
+
|
57 |
+
Args:
|
58 |
+
chunks: a collection of vectorized chunks to store
|
59 |
+
|
60 |
+
Returns: None
|
61 |
"""
|
62 |
try:
|
63 |
+
inserted_ids = await self.vectorized_chunk_repository.insert_many(chunks)
|
64 |
+
logger.debug("Stored {} vectorized chunks in the database.", len(inserted_ids))
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
65 |
except Exception as e:
|
66 |
+
logger.error("Error storing vectorized chunks: {}", str(e))
|
|
|
|
|
|
|
|
|
|
|
67 |
raise
|
src/ctp_slack_bot/utils/__init__.py
CHANGED
@@ -1 +1,2 @@
|
|
|
|
1 |
from ctp_slack_bot.utils.secret_stripper import sanitize_mongo_db_uri
|
|
|
1 |
+
from ctp_slack_bot.utils.immutable import to_deep_immutable
|
2 |
from ctp_slack_bot.utils.secret_stripper import sanitize_mongo_db_uri
|
src/ctp_slack_bot/utils/immutable.py
ADDED
@@ -0,0 +1,22 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from types import MappingProxyType
|
2 |
+
from collections.abc import Iterable, Mapping, Sequence, Set
|
3 |
+
from typing import Any
|
4 |
+
|
5 |
+
|
6 |
+
def to_deep_immutable(obj: Any):
|
7 |
+
"""Recursively convert mutable containers to immutable equivalents."""
|
8 |
+
|
9 |
+
# Handle mappings (dict-like).
|
10 |
+
if isinstance(obj, Mapping):
|
11 |
+
return MappingProxyType({to_deep_immutable(key): to_deep_immutable(value) for key, value in obj.items()})
|
12 |
+
|
13 |
+
# Handle sets.
|
14 |
+
if isinstance(obj, Set):
|
15 |
+
return frozenset(to_deep_immutable(item) for item in obj)
|
16 |
+
|
17 |
+
# Handle sequences (list/tuple-like).
|
18 |
+
if isinstance(obj, (Iterable, Sequence)) and not isinstance(obj, (str, bytes)):
|
19 |
+
return tuple(to_deep_immutable(item) for item in obj)
|
20 |
+
|
21 |
+
# Return anything else as-is.
|
22 |
+
return obj
|
temporary_health_check_server.py
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
from aiohttp import web
|
2 |
+
|
3 |
+
async def aliveness_handler(request):
|
4 |
+
return web.Response(text="Server is alive and kicking!")
|
5 |
+
|
6 |
+
app = web.Application()
|
7 |
+
app.router.add_get('/', aliveness_handler)
|
8 |
+
app.router.add_get('/health', aliveness_handler)
|
9 |
+
|
10 |
+
if __name__ == "__main__":
|
11 |
+
web.run_app(app, host='0.0.0.0', port=8080)
|