File size: 5,704 Bytes
6a51bf4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Loading Dependency Injection Container in Jupyter Notebook"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [],
   "source": [
    "from ctp_slack_bot.containers import Container\n",
    "from ctp_slack_bot.services import VectorDatabaseService\n",
    "\n",
    "container = Container()\n",
    "container.wire(packages=['ctp_slack_bot'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-04-19 16:43:46.927\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.core.config\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m14\u001b[0m - \u001b[34m\u001b[1mCreated Settings\u001b[0m\n"
     ]
    },
    {
     "data": {
      "text/plain": [
       "Settings(LOG_LEVEL='INFO', LOG_FORMAT='json', SCHEDULER_TIMEZONE='America/New_York', SLACK_BOT_TOKEN=SecretStr('**********'), SLACK_APP_TOKEN=SecretStr('**********'), EMBEDDING_MODEL='text-embedding-3-small', VECTOR_DIMENSION=1536, CHUNK_SIZE=1000, CHUNK_OVERLAP=200, TOP_K_MATCHES=5, MONGODB_URI=SecretStr('**********'), MONGODB_NAME='ctp_slack_bot', SCORE_THRESHOLD=0.5, HF_API_TOKEN=SecretStr('**********'), OPENAI_API_KEY=SecretStr('**********'), CHAT_MODEL='gpt-3.5-turbo', MAX_TOKENS=150, TEMPERATURE=0.8, SYSTEM_PROMPT=\"You are a helpful teaching assistant for a data science class.\\nBased on the students question, you will be given context retreived from class transcripts and materials to answer their question.\\nYour responses should be:\\n\\n1. Accurate and based on the class content\\n2. Clear and educational\\n3. Concise but complete\\nIf you're unsure about something, acknowledge it and suggest asking the professor.\", GOOGLE_PROJECT_ID='voltaic-reducer-294821', GOOGLE_PRIVATE_KEY_ID=SecretStr('**********'), GOOGLE_PRIVATE_KEY=SecretStr('**********'), GOOGLE_CLIENT_ID='102943207835073856980', GOOGLE_CLIENT_EMAIL='ctp-slack-bot-714@voltaic-reducer-294821.iam.gserviceaccount.com', GOOGLE_AUTH_URI='https://accounts.google.com/o/oauth2/auth', GOOGLE_TOKEN_URI='https://oauth2.googleapis.com/token', GOOGLE_AUTH_PROVIDER_CERT_URL='https://www.googleapis.com/oauth2/v1/certs', GOOGLE_CLIENT_CERT_URL='https://www.googleapis.com/robot/v1/metadata/x509/ctp-slack-bot-714%40voltaic-reducer-294821.iam.gserviceaccount.com', GOOGLE_UNIVERSE_DOMAIN='googleapis.com', FILE_MONITOR_ROOT_PATH='Transcripts/Friday Building AI Applications Session')"
      ]
     },
     "execution_count": 2,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "container.settings()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-04-19 16:45:25.997\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.core.config\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m14\u001b[0m - \u001b[34m\u001b[1mCreated Settings\u001b[0m\n"
     ]
    },
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "\u001b[32m2025-04-19 16:45:25.999\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36minit\u001b[0m:\u001b[36m175\u001b[0m - \u001b[1mInitializing MongoDB connection for database: ctp_slack_bot\u001b[0m\n",
      "\u001b[32m2025-04-19 16:45:25.999\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m26\u001b[0m - \u001b[34m\u001b[1mCreated MongoDB\u001b[0m\n",
      "\u001b[32m2025-04-19 16:45:25.999\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36mconnect\u001b[0m:\u001b[36m32\u001b[0m - \u001b[34m\u001b[1mConnecting to MongoDB using URI: mongodb+srv://ctp-slack-bot.xkipuvm.mongodb.net/?retryWrites=true&w=majority&appName=ctp-slack-bot\u001b[0m\n",
      "\u001b[32m2025-04-19 16:45:26.000\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36mconnect\u001b[0m:\u001b[36m49\u001b[0m - \u001b[34m\u001b[1mMongoDB client initialized for database: ctp_slack_bot\u001b[0m\n",
      "\u001b[32m2025-04-19 16:45:26.279\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36mping\u001b[0m:\u001b[36m85\u001b[0m - \u001b[34m\u001b[1mMongoDB connection is active!\u001b[0m\n",
      "\u001b[32m2025-04-19 16:45:26.280\u001b[0m | \u001b[1mINFO    \u001b[0m | \u001b[36mctp_slack_bot.db.mongo_db\u001b[0m:\u001b[36m_test_connection\u001b[0m:\u001b[36m186\u001b[0m - \u001b[1mMongoDB connection test successful!\u001b[0m\n",
      "\u001b[32m2025-04-19 16:45:26.280\u001b[0m | \u001b[34m\u001b[1mDEBUG   \u001b[0m | \u001b[36mctp_slack_bot.services.vector_database_service\u001b[0m:\u001b[36m__init__\u001b[0m:\u001b[36m21\u001b[0m - \u001b[34m\u001b[1mCreated VectorDatabaseService\u001b[0m\n"
     ]
    }
   ],
   "source": [
    "vector_database_service: VectorDatabaseService = container.vector_database_service()"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": ".venv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.3"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}