KingNish commited on
Commit
c414af1
·
verified ·
1 Parent(s): 3972273

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +20 -45
app.py CHANGED
@@ -1,35 +1,31 @@
1
  from fastapi import FastAPI, HTTPException, Request
2
- from fastapi.responses import StreamingResponse
3
  from fastapi.middleware.cors import CORSMiddleware
4
  import aiohttp
5
  import json
6
- import time
7
- import random
8
  import ast
9
- import urllib.parse
10
- from apscheduler.schedulers.background import BackgroundScheduler
11
  import os
12
  from pydantic import BaseModel
 
 
 
13
 
14
  SAMBA_NOVA_API_KEY = os.environ.get("SAMBA_NOVA_API_KEY", None)
15
 
16
  app = FastAPI()
17
 
18
- # Time-Limited Infinite Cache
19
- cache = {}
20
- CACHE_DURATION = 120
21
 
22
- # Function to clean up expired cache entries
23
- def cleanup_cache():
24
- current_time = time.time()
25
- for key, (value, timestamp) in list(cache.items()):
26
- if current_time - timestamp > CACHE_DURATION:
27
- del cache[key]
28
-
29
- # Initialize and start the scheduler
30
- scheduler = BackgroundScheduler()
31
- scheduler.add_job(cleanup_cache, 'interval', seconds=60) # Run cleanup every 60 seconds
32
- scheduler.start()
33
 
34
  class StreamTextRequest(BaseModel):
35
  query: str
@@ -38,43 +34,31 @@ class StreamTextRequest(BaseModel):
38
  api_key: str = None
39
 
40
  @app.post("/stream_text")
 
41
  async def stream_text(request: StreamTextRequest):
42
- current_time = time.time()
43
- cache_key = (request.query, request.history, request.model)
44
-
45
- # Check if the request is in the cache and not expired
46
- if cache_key in cache:
47
- cached_response, timestamp = cache[cache_key]
48
- return StreamingResponse(iter([f"{cached_response}"]), media_type='text/event-stream')
49
-
50
  # Model selection logic
51
  if "405" in request.model:
52
  fmodel = "Meta-Llama-3.1-405B-Instruct"
53
- if "70" in request.model:
54
- fmodel = "Meta-Llama-3.1-70B-Instruct"
55
  else:
56
- fmodel = "Meta-Llama-3.1-8B-Instruct"
57
 
58
  system_message = """You are Voicee, a friendly and intelligent voice assistant created by KingNish. Your primary goal is to provide accurate, concise, and engaging responses while maintaining a positive and upbeat tone. Always aim to provide clear and relevant information that directly addresses the user's query, but feel free to sprinkle in a dash of humor—after all, laughter is the best app! Keep your responses brief and to the point, avoiding unnecessary details or tangents, unless they’re hilariously relevant. Use a friendly and approachable tone to create a pleasant interaction, and don’t shy away from a cheeky pun or two! Tailor your responses based on the user's input and previous interactions, ensuring a personalized experience that feels like chatting with a witty friend. Invite users to ask follow-up questions or clarify their needs, fostering a conversational flow that’s as smooth as butter on a hot pancake. Aim to put a smile on the user's face with light-hearted and fun responses, and be proactive in offering additional help or suggestions related to the user's query. Remember, your goal is to be the go-to assistant for users, making their experience enjoyable and informative—like a delightful dessert after a hearty meal!"""
59
 
60
  messages = [{'role': 'system', 'content': system_message}]
61
-
62
  messages.extend(ast.literal_eval(request.history))
63
-
64
  messages.append({'role': 'user', 'content': request.query})
65
 
66
  data = {'messages': messages, 'stream': True, 'model': fmodel}
67
-
68
  api_key = request.api_key if request.api_key != 'none' else SAMBA_NOVA_API_KEY
69
 
70
-
71
  async def stream_response():
72
  async with aiohttp.ClientSession() as session:
73
- async with session.post('https://api.sambanova.ai/v1/chat/completions', headers = { 'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json' }, json=data) as response:
74
  if response.status != 200:
75
  raise HTTPException(status_code=response.status, detail="Error fetching AI response")
76
 
77
- response_content = ""
78
  async for line in response.content:
79
  line = line.decode('utf-8').strip()
80
  if line.startswith('data: {'):
@@ -84,22 +68,13 @@ async def stream_text(request: StreamTextRequest):
84
  content = parsed_data.get("choices", [{}])[0].get("delta", {}).get("content", '')
85
  if content:
86
  content = content.replace("\n", " ")
87
- response_content += f"data: {content}\n\n"
88
  yield f"data: {content}\n\n"
89
  except json.JSONDecodeError as e:
90
  print(f"Error decoding JSON: {e}")
91
  yield f"data: Error decoding JSON\n\n"
92
 
93
- # Cache the full response
94
- cache[cache_key] = (response_content, current_time)
95
-
96
  return StreamingResponse(stream_response(), media_type='text/event-stream')
97
 
98
-
99
-
100
- # Serve index.html from the same directory as your main.py file
101
- from starlette.responses import FileResponse
102
-
103
  @app.get("/script1.js")
104
  async def script1_js():
105
  return FileResponse("script1.js")
 
1
  from fastapi import FastAPI, HTTPException, Request
2
+ from fastapi.responses import StreamingResponse, FileResponse
3
  from fastapi.middleware.cors import CORSMiddleware
4
  import aiohttp
5
  import json
 
 
6
  import ast
 
 
7
  import os
8
  from pydantic import BaseModel
9
+ from datetime import datetime, timedelta
10
+ from aiocache import cached, SimpleMemoryCache
11
+ from aiocache.serializers import JsonSerializer
12
 
13
  SAMBA_NOVA_API_KEY = os.environ.get("SAMBA_NOVA_API_KEY", None)
14
 
15
  app = FastAPI()
16
 
17
+ # Constants for Caching
18
+ CACHE_TIME_SECONDS = 24 * 3600 # 24 hours in seconds
 
19
 
20
+ # Cache Middleware to add caching headers
21
+ @app.middleware("http")
22
+ async def add_cache_headers(request: Request, call_next):
23
+ response = await call_next(request)
24
+ if response.status_code == 200 and request.url.path != "/" and request.url.path != "/script1.js" and request.url.path != "/script2.js" and request.url.path != "/styles.css":
25
+ expires = datetime.utcnow() + timedelta(seconds=CACHE_TIME_SECONDS)
26
+ response.headers["Cache-Control"] = f"public, max-age={CACHE_TIME_SECONDS}"
27
+ response.headers["Expires"] = expires.strftime("%a, %d %b %Y %H:%M:%S GMT")
28
+ return response
 
 
29
 
30
  class StreamTextRequest(BaseModel):
31
  query: str
 
34
  api_key: str = None
35
 
36
  @app.post("/stream_text")
37
+ @cached(ttl=600, cache=SimpleMemoryCache, serializer=JsonSerializer())
38
  async def stream_text(request: StreamTextRequest):
 
 
 
 
 
 
 
 
39
  # Model selection logic
40
  if "405" in request.model:
41
  fmodel = "Meta-Llama-3.1-405B-Instruct"
42
+ elif "70" in request.model:
43
+ fmodel = "Meta-Llama-3.3-70B-Instruct"
44
  else:
45
+ fmodel = "Meta-Llama-3.1-1B-Instruct"
46
 
47
  system_message = """You are Voicee, a friendly and intelligent voice assistant created by KingNish. Your primary goal is to provide accurate, concise, and engaging responses while maintaining a positive and upbeat tone. Always aim to provide clear and relevant information that directly addresses the user's query, but feel free to sprinkle in a dash of humor—after all, laughter is the best app! Keep your responses brief and to the point, avoiding unnecessary details or tangents, unless they’re hilariously relevant. Use a friendly and approachable tone to create a pleasant interaction, and don’t shy away from a cheeky pun or two! Tailor your responses based on the user's input and previous interactions, ensuring a personalized experience that feels like chatting with a witty friend. Invite users to ask follow-up questions or clarify their needs, fostering a conversational flow that’s as smooth as butter on a hot pancake. Aim to put a smile on the user's face with light-hearted and fun responses, and be proactive in offering additional help or suggestions related to the user's query. Remember, your goal is to be the go-to assistant for users, making their experience enjoyable and informative—like a delightful dessert after a hearty meal!"""
48
 
49
  messages = [{'role': 'system', 'content': system_message}]
 
50
  messages.extend(ast.literal_eval(request.history))
 
51
  messages.append({'role': 'user', 'content': request.query})
52
 
53
  data = {'messages': messages, 'stream': True, 'model': fmodel}
 
54
  api_key = request.api_key if request.api_key != 'none' else SAMBA_NOVA_API_KEY
55
 
 
56
  async def stream_response():
57
  async with aiohttp.ClientSession() as session:
58
+ async with session.post('https://api.sambanova.ai/v1/chat/completions', headers={'Authorization': f'Bearer {api_key}', 'Content-Type': 'application/json'}, json=data) as response:
59
  if response.status != 200:
60
  raise HTTPException(status_code=response.status, detail="Error fetching AI response")
61
 
 
62
  async for line in response.content:
63
  line = line.decode('utf-8').strip()
64
  if line.startswith('data: {'):
 
68
  content = parsed_data.get("choices", [{}])[0].get("delta", {}).get("content", '')
69
  if content:
70
  content = content.replace("\n", " ")
 
71
  yield f"data: {content}\n\n"
72
  except json.JSONDecodeError as e:
73
  print(f"Error decoding JSON: {e}")
74
  yield f"data: Error decoding JSON\n\n"
75
 
 
 
 
76
  return StreamingResponse(stream_response(), media_type='text/event-stream')
77
 
 
 
 
 
 
78
  @app.get("/script1.js")
79
  async def script1_js():
80
  return FileResponse("script1.js")