Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,32 @@
|
|
|
|
|
| 1 |
import gradio as gr
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
-
# Define the classification function
|
| 4 |
def classify_task(prompt):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
# Here you would implement the logic to classify the prompt
|
| 6 |
# For example, using if-elif-else statements or a machine learning model
|
| 7 |
if 'generate text' in prompt.lower():
|
|
|
|
| 1 |
+
import re
|
| 2 |
import gradio as gr
|
| 3 |
+
from huggingface_hub import InferenceClient
|
| 4 |
+
|
| 5 |
+
client = InferenceClient("mistralai/Mixtral-8x7B-Instruct-v0.1")
|
| 6 |
+
|
| 7 |
+
system_instructions = """<s> [INST] You will be provided with text, and your task is to classify task tasks are (text generation, image generation, pdf chat, image text to text, image classification, summarization, translation , tts) """
|
| 8 |
+
|
| 9 |
|
|
|
|
| 10 |
def classify_task(prompt):
|
| 11 |
+
generate_kwargs = dict(
|
| 12 |
+
temperature=0.5,
|
| 13 |
+
max_new_tokens=1024,
|
| 14 |
+
top_p=0.95,
|
| 15 |
+
repetition_penalty=1.0,
|
| 16 |
+
do_sample=True,
|
| 17 |
+
seed=42,
|
| 18 |
+
)
|
| 19 |
+
|
| 20 |
+
formatted_prompt = system_instructions + prompt + "[/INST]"
|
| 21 |
+
stream = client.text_generation(
|
| 22 |
+
formatted_prompt, **generate_kwargs, stream=True, details=True, return_full_text=False)
|
| 23 |
+
output = ""
|
| 24 |
+
|
| 25 |
+
for response in stream:
|
| 26 |
+
output += response.token.text
|
| 27 |
+
|
| 28 |
+
# Define the classification function
|
| 29 |
+
def classify_task2(prompt):
|
| 30 |
# Here you would implement the logic to classify the prompt
|
| 31 |
# For example, using if-elif-else statements or a machine learning model
|
| 32 |
if 'generate text' in prompt.lower():
|