File size: 9,737 Bytes
b50f552
6ea4158
0556cb5
b50f552
 
6ea4158
 
0556cb5
b50f552
0556cb5
6ea4158
b50f552
6ea4158
 
b50f552
6ea4158
 
b50f552
 
 
 
 
fc208a2
b50f552
 
 
 
6ea4158
 
 
 
 
 
b50f552
6ea4158
 
b50f552
6ea4158
 
b50f552
6ea4158
 
 
 
 
 
 
 
 
b50f552
6ea4158
 
 
 
 
 
 
b50f552
6ea4158
b50f552
6ea4158
b50f552
6ea4158
b50f552
 
6ea4158
b50f552
 
 
 
 
 
6ea4158
b50f552
 
 
 
 
 
 
6ea4158
 
b50f552
 
 
 
 
 
 
6ea4158
 
 
b50f552
 
df86cb4
b50f552
6ea4158
b50f552
6ea4158
b50f552
6ea4158
 
 
 
 
 
 
 
 
 
 
b50f552
6ea4158
 
 
b50f552
 
6ea4158
b50f552
6ea4158
 
 
 
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df86cb4
e901891
 
 
 
 
 
 
 
 
8c5574c
 
551ddca
 
 
 
 
 
 
 
 
 
9d334e9
6ea4158
b50f552
df86cb4
 
b50f552
 
6ea4158
 
 
 
 
b50f552
 
 
 
 
 
 
 
 
df86cb4
 
551ddca
 
 
6ea4158
c52f232
 
df86cb4
 
 
b50f552
df86cb4
b50f552
df86cb4
 
 
 
b50f552
df86cb4
b50f552
df86cb4
b50f552
 
 
 
 
 
 
 
 
 
dff5a51
 
 
 
 
 
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
e55a688
6ea4158
b50f552
 
 
 
 
 
 
 
 
 
 
 
 
 
 
df86cb4
 
6ea4158
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
from __future__ import annotations

import os
import random
import uuid
from typing import Tuple

import gradio as gr
import numpy as np
import torch
from diffusers import LCMScheduler, PixArtAlphaPipeline

# Use a more descriptive variable name
MODEL_NAME = "PixArt-alpha/PixArt-LCM-XL-2-1024-MS"

# Move environment variable checks and definitions to the top for better readability
DESCRIPTION = """# Instant Image
        ### Super fast text to Image Generator.
        ### <span style='color: red;'>You may change the steps from 4 to 8, if you didn't get satisfied results.
        ### First Image processing takes time then images generate faster.
        """

MAX_IMAGE_SIZE = int(os.getenv("MAX_IMAGE_SIZE", "4192"))
USE_TORCH_COMPILE = os.getenv("USE_TORCH_COMPILE", "0") == "1"
ENABLE_CPU_OFFLOAD = os.getenv("ENABLE_CPU_OFFLOAD", "0") == "1"
PORT = int(os.getenv("DEMO_PORT", "15432"))

# Check CUDA availability early on
if not torch.cuda.is_available():
    DESCRIPTION += "\n<p>Running on CPU 🥶 This demo does not work on CPU.</p>"

# Cache examples only if CUDA is available
CACHE_EXAMPLES = torch.cuda.is_available() and os.getenv("CACHE_EXAMPLES", "1") == "1"

MAX_SEED = np.iinfo(np.int32).max
NUM_IMAGES_PER_PROMPT = 1

# Use Enum for better style management
from enum import Enum

class Style(Enum):
    NO_STYLE = ("(No style)", "{prompt}", "")
    CINEMATIC = ("Cinematic", "cinematic still {prompt} . emotional, harmonious, vignette, highly detailed, high budget, bokeh, cinemascope, moody, epic, gorgeous, film grain, grainy", "anime, cartoon, graphic, text, painting, crayon, graphite, abstract, glitch, deformed, mutated, ugly, disfigured")
    REALISTIC = ("Realistic", "Photorealistic {prompt} . Ulta-realistic, professional, 4k, highly detailed", "drawing, painting, crayon, sketch, graphite, impressionist, noisy, blurry, soft, deformed, ugly, disfigured")
    ANIME = ("Anime", "anime artwork {prompt} . anime style, key visual, vibrant, studio anime,  highly detailed", "photo, deformed, black and white, realism, disfigured, low contrast")
    DIGITAL_ART = ("Digital Art", "concept art {prompt} . digital artwork, illustrative, painterly, matte painting, highly detailed", "photo, photorealistic, realism, ugly")
    PIXEL_ART = ("Pixel art", "pixel-art {prompt} . low-res, blocky, pixel art style, 8-bit graphics", "sloppy, messy, blurry, noisy, highly detailed, ultra textured, photo, realistic")
    FANTASY_ART = ("Fantasy art", "ethereal fantasy concept art of  {prompt} . magnificent, celestial, ethereal, painterly, epic, majestic, magical, fantasy art, cover art, dreamy", "photographic, realistic, realism, 35mm film, dslr, cropped, frame, text, deformed, glitch, noise, noisy, off-center, deformed, cross-eyed, closed eyes, bad anatomy, ugly, disfigured, sloppy, duplicate, mutated, black and white")
    THREE_D_MODEL = ("3D Model", "professional 3d model {prompt} . octane render, highly detailed, volumetric, dramatic lighting", "ugly, deformed, noisy, low poly, blurry, painting")

    def __init__(self, name, prompt, negative_prompt):
        self.name = name
        self.prompt = prompt
        self.negative_prompt = negative_prompt

# Use the Enum values directly
styles = {style.name: (style.prompt, style.negative_prompt) for style in Style}
STYLE_NAMES = list(styles.keys())
DEFAULT_STYLE_NAME = Style.NO_STYLE.name

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

# Load the pipeline only if CUDA is available
if torch.cuda.is_available():
    pipe = PixArtAlphaPipeline.from_pretrained(
        MODEL_NAME,
        torch_dtype=torch.float16,
        use_safetensors=True,
    )

    if os.getenv('CONSISTENCY_DECODER', False):
        print("Using DALL-E 3 Consistency Decoder")
        # Assuming ConsistencyDecoderVAE is defined elsewhere
        pipe.vae = ConsistencyDecoderVAE.from_pretrained("openai/consistency-decoder", torch_dtype=torch.float16)

    if ENABLE_CPU_OFFLOAD:
        pipe.enable_model_cpu_offload()
    else:
        pipe.to(device)
        print("Loaded on Device!")

    # Speed-up T5
    pipe.text_encoder.to_bettertransformer()

    if USE_TORCH_COMPILE:
        pipe.transformer = torch.compile(pipe.transformer, mode="reduce-overhead", fullgraph=True)
        print("Model Compiled!")

def save_image(img):
    # Generate image names in a temporary directory
    os.makedirs("tmp", exist_ok=True)
    unique_name = os.path.join("tmp", f"{uuid.uuid4()}.png")
    img.save(unique_name)
    return unique_name

def randomize_seed_fn(seed: int, randomize_seed: bool) -> int:
    return random.randint(0, MAX_SEED) if randomize_seed else seed

# No need to use @spaces.GPU if you're checking CUDA availability within the function
def generate(
    prompt: str,
    negative_prompt: str = "",
    style: str = DEFAULT_STYLE_NAME,
    use_negative_prompt: bool = False,
    seed: int = 0,
    width: int = 1024,
    height: int = 1024,
    inference_steps: int = 8,
    randomize_seed: bool = False,
    use_resolution_binning: bool = True,
    progress=gr.Progress(track_tqdm=True),
):
    if not torch.cuda.is_available():
        return "This demo requires a GPU to run.", seed

    seed = int(randomize_seed_fn(seed, randomize_seed))
    generator = torch.Generator().manual_seed(seed)

    if not use_negative_prompt:
        negative_prompt = None 

    prompt, negative_prompt = styles.get(style, styles[DEFAULT_STYLE_NAME])
    prompt = prompt.replace("{prompt}", prompt)

    images = pipe(
        prompt=prompt,
        negative_prompt=negative_prompt,
        width=width,
        height=height,
        guidance_scale=0,
        num_inference_steps=inference_steps,
        generator=generator,
        num_images_per_prompt=NUM_IMAGES_PER_PROMPT,
        use_resolution_binning=use_resolution_binning,
        output_type="pil",
    ).images

    image_paths = [save_image(img) for img in images]
    return image_paths, seed


examples = [
    "A Monkey with a happy face in the Sahara desert.",
    "Eiffel Tower was Made up of ICE.",
    "Color photo of a corgi made of transparent glass, standing on the riverside in Yosemite National Park.",
    "A close-up photo of a woman. She wore a blue coat with a gray dress underneath and has blue eyes.",
    "A litter of golden retriever puppies playing in the snow. Their heads pop out of the snow, covered in.",
    "an astronaut sitting in a diner, eating fries, cinematic, analog film",
]

css = '''
.gradio-container{max-width: 560px !important}
h1{text-align:center}
footer {
    visibility: hidden
}
'''

with gr.Blocks(css=css) as demo:
    gr.Markdown(DESCRIPTION)
    with gr.Row(equal_height=False):
        with gr.Group():
            with gr.Row():
                prompt = gr.Text(
                    label="Prompt",
                    show_label=False,
                    max_lines=1,
                    placeholder="Enter your prompt",
                    container=False,
                )
                run_button = gr.Button("Run", scale=0)
            result = gr.Gallery(label="Result", columns=1,  show_label=False)

    with gr.Accordion("Advanced options", open=False):
        with gr.Group():
            with gr.Row():
                use_negative_prompt = gr.Checkbox(label="Use negative prompt", value=False, visible=True)
                negative_prompt = gr.Text(
                    label="Negative prompt",
                    max_lines=1,
                    placeholder="Enter a negative prompt",
                    visible=True,
                )
            style_selection = gr.Radio(
                show_label=True,
                container=True,
                interactive=True,
                choices=STYLE_NAMES,
                value=DEFAULT_STYLE_NAME,
                label="Image Style",
            )
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
            with gr.Row(visible=True):
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
        with gr.Row():
            inference_steps = gr.Slider(
                label="Steps",
                minimum=4,
                maximum=20,
                step=1,
                value=4,
            )

    gr.Examples(
        examples=examples,
        inputs=prompt,
        outputs=[result, seed],
        fn=generate,
        cache_examples=CACHE_EXAMPLES,
    )
    use_negative_prompt.change(
        fn=lambda x: gr.update(visible=x),
        inputs=use_negative_prompt,
        outputs=negative_prompt,
        api_name=False,
    )

    gr.on(
        triggers=[
            prompt.submit,
            negative_prompt.submit,
            run_button.click,
        ],
        batch=True,
        max_batch_size=10,
        fn=generate,
        inputs=[
            prompt,
            negative_prompt,
            style_selection,
            use_negative_prompt,
            seed,
            width,
            height,
            inference_steps,
            randomize_seed,
        ],
        outputs=[result, seed],
        api_name="run",
    )

if __name__ == "__main__":
    demo.queue(max_size=200).launch(server_port=PORT)