import PyPDF2 from openpyxl import load_workbook from pptx import Presentation import gradio as gr import io from huggingface_hub import InferenceClient import re import zipfile import xml.etree.ElementTree as ET def xml2text(xml): text = u'' root = ET.fromstring(xml) for child in root.iter(): text += child.text + " " if child.text is not None else '' return text def extract_text_from_docx(docx_data): text = u'' zipf = zipfile.ZipFile(io.BytesIO(docx_data)) filelist = zipf.namelist() header_xmls = 'word/header[0-9]*.xml' for fname in filelist: if re.match(header_xmls, fname): text += xml2text(zipf.read(fname)) doc_xml = 'word/document.xml' text += xml2text(zipf.read(doc_xml)) footer_xmls = 'word/footer[0-9]*.xml' for fname in filelist: if re.match(footer_xmls, fname): text += xml2text(zipf.read(fname)) zipf.close() return text.strip() # Initialize the Mistral chat model client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407") def read_document(file): file_path = file.name # Get the file path from NamedString file_extension = file_path.split('.')[-1].lower() with open(file_path, "rb") as f: # Open the file in binary read mode file_content = f.read() if file_extension == 'pdf': try: pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content)) content = '' for page in range(len(pdf_reader.pages)): content += pdf_reader.pages[page].extract_text() return content except Exception as e: return f"Error reading PDF: {e}" elif file_extension == 'xlsx': try: wb = load_workbook(io.BytesIO(file_content)) content = '' for sheet in wb.worksheets: for row in sheet.rows: for cell in row: if cell.value is not None: content += str(cell.value) + ' ' return content except Exception as e: return f"Error reading XLSX: {e}" elif file_extension == 'pptx': try: presentation = Presentation(io.BytesIO(file_content)) content = '' for slide in presentation.slides: for shape in slide.shapes: if hasattr(shape, "text"): content += shape.text + ' ' return content except Exception as e: return f"Error reading PPTX: {e}" elif file_extension == 'doc' or file_extension == 'docx': try: return extract_text_from_docx(file_content) except Exception as e: return f"Error reading DOC/DOCX: {e}" else: try: content = file_content.decode('utf-8') return content except Exception as e: return f"Error reading file: {e}" def split_content(content, chunk_size=32000): chunks = [] for i in range(0, len(content), chunk_size): chunks.append(content[i:i + chunk_size]) return chunks def chat_document(file, question): content = str(read_document(file)) if len(content) > 32000: content = content.replace('\n', ' ') content = content.replace('\r', ' ') content = content.replace('\t', ' ') content = content.replace(' ', '') content = content.strip() content = content[:32000] # Define system prompt for the chat API system_prompt = """ You are a helpful and informative assistant that can answer questions based on the content of documents. You will receive the content of a document and a question about it. Your task is to provide a concise and accurate answer to the question based solely on the provided document content. If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information. """ message = f"""[INST] [SYSTEM] {system_prompt} Document Content: {content} Question: {question} Answer:""" stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text yield output def chat_document_v2(file, question): content = str(read_document(file)) content = content.replace('\n', ' ') content = content.replace('\r', ' ') content = content.replace('\t', ' ') content = content.replace(' ', '') content = content.strip() chunks = split_content(content) # Define system prompt for the chat API system_prompt = """ You are a helpful and informative assistant that can answer questions based on the content of documents. You will receive the content of a document and a question about it. Your task is to provide a concise and accurate answer to the question based solely on the provided document content. If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information. """ all_answers = [] for chunk in chunks: message = f"""[INST] [SYSTEM] {system_prompt} Document Content: {chunk[:32000]} Question: {question} Answer:""" stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text all_answers.append(output) # Summarize all answers using Mistral summary_prompt = """ You are a helpful and informative assistant that can summarize multiple answers related to the same question. You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers. Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers. Answers: """ all_answers_str = "\n".join(all_answers) print(all_answers_str) summary_message = f"""[INST] [SYSTEM] {summary_prompt} {all_answers_str[:30000]} Summary:""" stream = client.text_generation(summary_message, max_new_tokens=4096, stream=True, details=True, return_full_text=False) output = "" for response in stream: if not response.token.text == "": output += response.token.text yield output with gr.Blocks() as demo: with gr.Tabs(): with gr.TabItem("Document Reader"): iface1 = gr.Interface( fn=read_document, inputs=gr.File(label="Upload a Document"), outputs=gr.Textbox(label="Document Content"), title="Document Reader", description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content." ) with gr.TabItem("Document Chat"): iface2 = gr.Interface( fn=chat_document, inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")], outputs=gr.Markdown(label="Answer"), title="Document Chat", description="Upload a document and ask questions about its content." ) with gr.TabItem("Document Chat V2"): iface3 = gr.Interface( fn=chat_document_v2, inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")], outputs=gr.Markdown(label="Answer"), title="Document Chat V2", description="Upload a document and ask questions about its content (using chunk-based approach)." ) demo.launch()