Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -3,7 +3,6 @@ from openpyxl import load_workbook
|
|
| 3 |
from pptx import Presentation
|
| 4 |
import gradio as gr
|
| 5 |
import io
|
| 6 |
-
from huggingface_hub import InferenceClient
|
| 7 |
import re
|
| 8 |
import zipfile
|
| 9 |
import xml.etree.ElementTree as ET
|
|
@@ -11,10 +10,6 @@ import filetype
|
|
| 11 |
|
| 12 |
# Constants
|
| 13 |
CHUNK_SIZE = 32000
|
| 14 |
-
MAX_NEW_TOKENS = 4096
|
| 15 |
-
|
| 16 |
-
# Initialize the Mistral chat model
|
| 17 |
-
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
|
| 18 |
|
| 19 |
# --- Utility Functions ---
|
| 20 |
|
|
@@ -168,131 +163,23 @@ def read_document(file, clean=True):
|
|
| 168 |
return f"Error reading file: {e}", 0
|
| 169 |
|
| 170 |
|
| 171 |
-
|
| 172 |
-
# --- Chat Functions ---
|
| 173 |
-
|
| 174 |
-
def generate_mistral_response(message):
|
| 175 |
-
"""Generates a response from the Mistral API."""
|
| 176 |
-
stream = client.text_generation(
|
| 177 |
-
message,
|
| 178 |
-
max_new_tokens=MAX_NEW_TOKENS,
|
| 179 |
-
stream=True,
|
| 180 |
-
details=True,
|
| 181 |
-
return_full_text=False
|
| 182 |
-
)
|
| 183 |
-
output = ""
|
| 184 |
-
for response in stream:
|
| 185 |
-
if not response.token.text == "</s>":
|
| 186 |
-
output += response.token.text
|
| 187 |
-
yield output
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
def chat_document(file, question, clean=True):
|
| 191 |
-
"""Chats with a document using a single Mistral API call."""
|
| 192 |
-
content, length = read_document(file, clean)
|
| 193 |
-
if length > CHUNK_SIZE:
|
| 194 |
-
content = content[:CHUNK_SIZE] # Limit to max chunk size
|
| 195 |
-
|
| 196 |
-
system_prompt = """
|
| 197 |
-
You are a helpful and informative assistant that can answer questions based on the content of documents.
|
| 198 |
-
You will receive the content of a document and a question about it.
|
| 199 |
-
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
|
| 200 |
-
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
|
| 201 |
-
"""
|
| 202 |
-
|
| 203 |
-
message = f"""[INST] [SYSTEM] {system_prompt}
|
| 204 |
-
Document Content: {content}
|
| 205 |
-
Question: {question}
|
| 206 |
-
Answer:"""
|
| 207 |
-
|
| 208 |
-
yield from generate_mistral_response(message)
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
def chat_document_v2(file, question, clean=True):
|
| 212 |
-
"""Chats with a document using chunk-based Mistral API calls and summarizes the answers."""
|
| 213 |
-
content, length = read_document(file, clean)
|
| 214 |
-
chunks = split_content(content)
|
| 215 |
-
|
| 216 |
-
system_prompt = """
|
| 217 |
-
You are a helpful and informative assistant that can answer questions based on the content of documents.
|
| 218 |
-
You will receive the content of a document and a question about it.
|
| 219 |
-
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
|
| 220 |
-
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
|
| 221 |
-
"""
|
| 222 |
-
|
| 223 |
-
all_answers = []
|
| 224 |
-
for chunk in chunks:
|
| 225 |
-
message = f"""[INST] [SYSTEM] {system_prompt}
|
| 226 |
-
Document Content: {chunk[:CHUNK_SIZE]}
|
| 227 |
-
Question: {question}
|
| 228 |
-
Answer:"""
|
| 229 |
-
|
| 230 |
-
response = ""
|
| 231 |
-
for stream_response in generate_mistral_response(message):
|
| 232 |
-
response = stream_response # Update with latest response
|
| 233 |
-
all_answers.append(response)
|
| 234 |
-
|
| 235 |
-
# Summarize all answers using Mistral
|
| 236 |
-
summary_prompt = """
|
| 237 |
-
You are a helpful and informative assistant that can summarize multiple answers related to the same question.
|
| 238 |
-
You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers.
|
| 239 |
-
Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers.
|
| 240 |
-
|
| 241 |
-
Answers:
|
| 242 |
-
"""
|
| 243 |
-
|
| 244 |
-
all_answers_str = "\n".join(all_answers)
|
| 245 |
-
summary_message = f"""[INST] [SYSTEM] {summary_prompt}
|
| 246 |
-
{all_answers_str[:30000]}
|
| 247 |
-
Summary:"""
|
| 248 |
-
|
| 249 |
-
yield from generate_mistral_response(summary_message)
|
| 250 |
-
|
| 251 |
-
|
| 252 |
# --- Gradio Interface ---
|
| 253 |
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
| 264 |
-
|
| 265 |
-
|
| 266 |
-
|
| 267 |
-
|
| 268 |
-
|
| 269 |
-
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
iface2 = gr.Interface(
|
| 273 |
-
fn=chat_document,
|
| 274 |
-
inputs=[
|
| 275 |
-
gr.File(label="Upload a Document"),
|
| 276 |
-
gr.Textbox(label="Question"),
|
| 277 |
-
gr.Checkbox(label="Clean and Compress Text", value=True),
|
| 278 |
-
],
|
| 279 |
-
outputs=gr.Markdown(label="Answer"),
|
| 280 |
-
title="Document Chat",
|
| 281 |
-
description="Upload a document and ask questions about its content.",
|
| 282 |
-
concurrency_limit = None
|
| 283 |
-
)
|
| 284 |
-
with gr.TabItem("Document Chat V2"):
|
| 285 |
-
iface3 = gr.Interface(
|
| 286 |
-
fn=chat_document_v2,
|
| 287 |
-
inputs=[
|
| 288 |
-
gr.File(label="Upload a Document"),
|
| 289 |
-
gr.Textbox(label="Question"),
|
| 290 |
-
gr.Checkbox(label="Clean Text", value=True),
|
| 291 |
-
],
|
| 292 |
-
outputs=gr.Markdown(label="Answer"),
|
| 293 |
-
title="Document Chat V2",
|
| 294 |
-
description="Upload a document and ask questions about its content (using chunk-based approach).",
|
| 295 |
-
concurrency_limit =None
|
| 296 |
-
)
|
| 297 |
-
|
| 298 |
-
demo.launch()
|
|
|
|
| 3 |
from pptx import Presentation
|
| 4 |
import gradio as gr
|
| 5 |
import io
|
|
|
|
| 6 |
import re
|
| 7 |
import zipfile
|
| 8 |
import xml.etree.ElementTree as ET
|
|
|
|
| 10 |
|
| 11 |
# Constants
|
| 12 |
CHUNK_SIZE = 32000
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# --- Utility Functions ---
|
| 15 |
|
|
|
|
| 163 |
return f"Error reading file: {e}", 0
|
| 164 |
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
# --- Gradio Interface ---
|
| 167 |
|
| 168 |
+
iface = gr.Interface(
|
| 169 |
+
fn=read_document,
|
| 170 |
+
inputs=[
|
| 171 |
+
gr.File(label="Upload a Document"),
|
| 172 |
+
gr.Checkbox(label="Clean Text", value=True),
|
| 173 |
+
],
|
| 174 |
+
outputs=[
|
| 175 |
+
gr.Textbox(label="Document Content"),
|
| 176 |
+
gr.Number(label="Document Length (characters)"),
|
| 177 |
+
],
|
| 178 |
+
title="Better Document Reader for Hugging Face Chat Tools",
|
| 179 |
+
description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
|
| 180 |
+
"This tool is designed for use with Hugging Face Chat Tools: "
|
| 181 |
+
"[https://hf.co/chat/tools/66ed8236a35891a61e2bfcf2](https://hf.co/chat/tools/66ed8236a35891a61e2bfcf2)",
|
| 182 |
+
concurrency_limit = None
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
iface.launch()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|