Spaces:
Running
Running
File size: 8,069 Bytes
217892e a1654f3 217892e 8a16657 217892e a1654f3 217892e c87c622 217892e eff0b10 930d181 eff0b10 a0b78eb 217892e 8dc1546 217892e 431526e 8dc1546 217892e c87c622 eff0b10 930d181 eff0b10 c87c622 d899029 a43ac05 c87c622 217892e d899029 217892e c87c622 d899029 c87c622 217892e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 |
import PyPDF2
from openpyxl import load_workbook
from pptx import Presentation
import gradio as gr
import io
from huggingface_hub import InferenceClient
import re
import zipfile
import xml.etree.ElementTree as ET
def xml2text(xml):
text = u''
root = ET.fromstring(xml)
for child in root.iter():
text += child.text + " " if child.text is not None else ''
return text
def extract_text_from_docx(docx_data):
text = u''
zipf = zipfile.ZipFile(io.BytesIO(docx_data))
filelist = zipf.namelist()
header_xmls = 'word/header[0-9]*.xml'
for fname in filelist:
if re.match(header_xmls, fname):
text += xml2text(zipf.read(fname))
doc_xml = 'word/document.xml'
text += xml2text(zipf.read(doc_xml))
footer_xmls = 'word/footer[0-9]*.xml'
for fname in filelist:
if re.match(footer_xmls, fname):
text += xml2text(zipf.read(fname))
zipf.close()
return text.strip()
# Initialize the Mistral chat model
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")
def read_document(file):
file_path = file.name # Get the file path from NamedString
file_extension = file_path.split('.')[-1].lower()
with open(file_path, "rb") as f: # Open the file in binary read mode
file_content = f.read()
if file_extension == 'pdf':
try:
pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content))
content = ''
for page in range(len(pdf_reader.pages)):
content += pdf_reader.pages[page].extract_text()
return content
except Exception as e:
return f"Error reading PDF: {e}"
elif file_extension == 'xlsx':
try:
wb = load_workbook(io.BytesIO(file_content))
content = ''
for sheet in wb.worksheets:
for row in sheet.rows:
for cell in row:
if cell.value is not None:
content += str(cell.value) + ' '
return content
except Exception as e:
return f"Error reading XLSX: {e}"
elif file_extension == 'pptx':
try:
presentation = Presentation(io.BytesIO(file_content))
content = ''
for slide in presentation.slides:
for shape in slide.shapes:
if hasattr(shape, "text"):
content += shape.text + ' '
return content
except Exception as e:
return f"Error reading PPTX: {e}"
elif file_extension == 'doc' or file_extension == 'docx':
try:
return extract_text_from_docx(file_content)
except Exception as e:
return f"Error reading DOC/DOCX: {e}"
else:
try:
content = file_content.decode('utf-8')
return content
except Exception as e:
return f"Error reading file: {e}"
def split_content(content, chunk_size=32000):
chunks = []
for i in range(0, len(content), chunk_size):
chunks.append(content[i:i + chunk_size])
return chunks
def chat_document(file, question):
content = str(read_document(file))
content = content.replace('\n', ' ')
content = content.replace('\r', ' ')
content = content.replace('\t', ' ')
content = content.replace(' ', '')
content = content.strip()
if len(content) > 32000:
content = content[:32000]
# Define system prompt for the chat API
system_prompt = """
You are a helpful and informative assistant that can answer questions based on the content of documents.
You will receive the content of a document and a question about it.
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
"""
message = f"""[INST] [SYSTEM] {system_prompt}
Document Content: {content}
Question: {question}
Answer:"""
stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
yield output
def chat_document_v2(file, question):
content = str(read_document(file))
content = content.replace('\n', ' ')
content = content.replace('\r', ' ')
content = content.replace('\t', ' ')
content = content.replace(' ', '')
content = content.strip()
chunks = split_content(content)
# Define system prompt for the chat API
system_prompt = """
You are a helpful and informative assistant that can answer questions based on the content of documents.
You will receive the content of a document and a question about it.
Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
"""
all_answers = []
for chunk in chunks:
message = f"""[INST] [SYSTEM] {system_prompt}
Document Content: {chunk[:32000]}
Question: {question}
Answer:"""
stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
all_answers.append(output)
# Summarize all answers using Mistral
summary_prompt = """
You are a helpful and informative assistant that can summarize multiple answers related to the same question.
You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers.
Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers.
Answers:
"""
all_answers_str = "\n".join(all_answers)
print(all_answers_str)
summary_message = f"""[INST] [SYSTEM] {summary_prompt}
{all_answers_str[:30000]}
Summary:"""
stream = client.text_generation(summary_message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
output = ""
for response in stream:
if not response.token.text == "</s>":
output += response.token.text
yield output
with gr.Blocks() as demo:
with gr.Tabs():
with gr.TabItem("Document Reader"):
iface1 = gr.Interface(
fn=read_document,
inputs=gr.File(label="Upload a Document"),
outputs=gr.Textbox(label="Document Content"),
title="Document Reader",
description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
)
with gr.TabItem("Document Chat"):
iface2 = gr.Interface(
fn=chat_document,
inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")],
outputs=gr.Markdown(label="Answer"),
title="Document Chat",
description="Upload a document and ask questions about its content."
)
with gr.TabItem("Document Chat V2"):
iface3 = gr.Interface(
fn=chat_document_v2,
inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")],
outputs=gr.Markdown(label="Answer"),
title="Document Chat V2",
description="Upload a document and ask questions about its content (using chunk-based approach)."
)
demo.launch() |