File size: 8,069 Bytes
217892e
 
 
 
 
 
a1654f3
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
217892e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8a16657
 
217892e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
a1654f3
217892e
 
 
 
 
 
 
 
 
 
c87c622
 
 
 
 
 
217892e
 
eff0b10
 
 
930d181
eff0b10
a0b78eb
 
217892e
 
 
 
 
 
 
 
 
 
 
 
 
 
8dc1546
217892e
 
431526e
 
8dc1546
217892e
 
c87c622
 
eff0b10
 
 
930d181
eff0b10
c87c622
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d899029
a43ac05
c87c622
 
 
 
 
 
 
 
 
 
217892e
 
 
 
 
 
 
 
 
 
 
 
 
 
d899029
217892e
 
 
c87c622
 
 
 
d899029
c87c622
 
 
217892e
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
import PyPDF2
from openpyxl import load_workbook
from pptx import Presentation
import gradio as gr
import io
from huggingface_hub import InferenceClient
import re
import zipfile
import xml.etree.ElementTree as ET

def xml2text(xml):
    text = u''
    root = ET.fromstring(xml)
    for child in root.iter():
        text += child.text + " " if child.text is not None else ''
    return text


def extract_text_from_docx(docx_data):
    text = u''
    zipf = zipfile.ZipFile(io.BytesIO(docx_data))

    filelist = zipf.namelist()

    header_xmls = 'word/header[0-9]*.xml'
    for fname in filelist:
        if re.match(header_xmls, fname):
            text += xml2text(zipf.read(fname))

    doc_xml = 'word/document.xml'
    text += xml2text(zipf.read(doc_xml))

    footer_xmls = 'word/footer[0-9]*.xml'
    for fname in filelist:
        if re.match(footer_xmls, fname):
            text += xml2text(zipf.read(fname))

    zipf.close()
    return text.strip()

# Initialize the Mistral chat model
client = InferenceClient("mistralai/Mistral-Nemo-Instruct-2407")

def read_document(file):
    file_path = file.name  # Get the file path from NamedString
    file_extension = file_path.split('.')[-1].lower()

    with open(file_path, "rb") as f:  # Open the file in binary read mode
        file_content = f.read()

    if file_extension == 'pdf':
        try:
            pdf_reader = PyPDF2.PdfReader(io.BytesIO(file_content))
            content = ''
            for page in range(len(pdf_reader.pages)):
                content += pdf_reader.pages[page].extract_text()
            return content
        except Exception as e:
            return f"Error reading PDF: {e}"

    elif file_extension == 'xlsx':
        try:
            wb = load_workbook(io.BytesIO(file_content))
            content = ''
            for sheet in wb.worksheets:
                for row in sheet.rows:
                    for cell in row:
                        if cell.value is not None: 
                            content += str(cell.value) + ' '
            return content
        except Exception as e:
            return f"Error reading XLSX: {e}"

    elif file_extension == 'pptx':
        try:
            presentation = Presentation(io.BytesIO(file_content))
            content = ''
            for slide in presentation.slides:
                for shape in slide.shapes:
                    if hasattr(shape, "text"):
                        content += shape.text + ' '
            return content
        except Exception as e:
            return f"Error reading PPTX: {e}"

    elif file_extension == 'doc' or file_extension == 'docx':
        try:
            return extract_text_from_docx(file_content)
        except Exception as e:
            return f"Error reading DOC/DOCX: {e}"

    else:
        try:
            content = file_content.decode('utf-8') 
            return content
        except Exception as e:
            return f"Error reading file: {e}"

def split_content(content, chunk_size=32000):
    chunks = []
    for i in range(0, len(content), chunk_size):
        chunks.append(content[i:i + chunk_size])
    return chunks

def chat_document(file, question):
    content = str(read_document(file))
    content = content.replace('\n', ' ')
    content = content.replace('\r', ' ')
    content = content.replace('\t', ' ')
    content = content.replace('  ', '')
    content = content.strip()
    if len(content) > 32000:
        content = content[:32000]

    # Define system prompt for the chat API
    system_prompt = """
    You are a helpful and informative assistant that can answer questions based on the content of documents. 
    You will receive the content of a document and a question about it. 
    Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
    If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
    """

    message = f"""[INST] [SYSTEM] {system_prompt} 
    Document Content: {content}
    Question: {question}
    Answer:"""

    stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
        yield output


def chat_document_v2(file, question):
    content = str(read_document(file))
    content = content.replace('\n', ' ')
    content = content.replace('\r', ' ')
    content = content.replace('\t', ' ')
    content = content.replace('  ', '')
    content = content.strip()
    chunks = split_content(content)
    
    # Define system prompt for the chat API
    system_prompt = """
    You are a helpful and informative assistant that can answer questions based on the content of documents. 
    You will receive the content of a document and a question about it. 
    Your task is to provide a concise and accurate answer to the question based solely on the provided document content.
    If the document does not contain enough information to answer the question, simply state that you cannot answer the question based on the provided information.
    """

    all_answers = []
    for chunk in chunks:
        message = f"""[INST] [SYSTEM] {system_prompt} 
        Document Content: {chunk[:32000]}
        Question: {question}
        Answer:"""

        stream = client.text_generation(message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
        output = ""
        for response in stream:
            if not response.token.text == "</s>":
                output += response.token.text
        all_answers.append(output)

    # Summarize all answers using Mistral
    summary_prompt = """
    You are a helpful and informative assistant that can summarize multiple answers related to the same question. 
    You will receive a list of answers to a question, and your task is to generate a concise and comprehensive summary that incorporates the key information from all the answers.
    Avoid repeating information unnecessarily and focus on providing the most relevant and accurate summary based on the provided answers.
    
    Answers:
    """
    
    all_answers_str = "\n".join(all_answers)
    print(all_answers_str)
    summary_message = f"""[INST] [SYSTEM] {summary_prompt}
    {all_answers_str[:30000]}
    Summary:"""
    
    stream = client.text_generation(summary_message, max_new_tokens=4096, stream=True, details=True, return_full_text=False)
    output = ""
    for response in stream:
        if not response.token.text == "</s>":
            output += response.token.text
        yield output 

with gr.Blocks() as demo:
    with gr.Tabs():
        with gr.TabItem("Document Reader"):
            iface1 = gr.Interface(
                fn=read_document,
                inputs=gr.File(label="Upload a Document"),
                outputs=gr.Textbox(label="Document Content"),
                title="Document Reader",
                description="Upload a document (PDF, XLSX, PPTX, TXT, CSV, DOC, DOCX and Code or text file) to read its content."
            )
        with gr.TabItem("Document Chat"):
            iface2 = gr.Interface(
                fn=chat_document,
                inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")],
                outputs=gr.Markdown(label="Answer"), 
                title="Document Chat",
                description="Upload a document and ask questions about its content."
            )
        with gr.TabItem("Document Chat V2"):
            iface3 = gr.Interface(
                fn=chat_document_v2,
                inputs=[gr.File(label="Upload a Document"), gr.Textbox(label="Question")],
                outputs=gr.Markdown(label="Answer"), 
                title="Document Chat V2",
                description="Upload a document and ask questions about its content (using chunk-based approach)."
            )

demo.launch()