Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,19 +1,12 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
|
4 |
-
from transformers import AutoModelForImageSegmentation
|
5 |
-
import torch
|
6 |
-
from torchvision import transforms
|
7 |
-
from PIL import Image
|
8 |
-
import os
|
9 |
|
10 |
-
# ๋ชจ๋ธ ๋ก๋ ๋ฐ CPU๋ก ์ค์
|
11 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
12 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
13 |
)
|
14 |
birefnet.to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ
|
15 |
|
16 |
-
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ
|
17 |
transform_image = transforms.Compose(
|
18 |
[
|
19 |
transforms.Resize((1024, 1024)),
|
@@ -22,10 +15,20 @@ transform_image = transforms.Compose(
|
|
22 |
]
|
23 |
)
|
24 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
25 |
def process(image):
|
26 |
image_size = image.size
|
27 |
-
input_images = transform_image(image).unsqueeze(0).to("cpu") # CPU๋ก ๋ณ๊ฒฝ
|
28 |
-
#
|
29 |
with torch.no_grad():
|
30 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
31 |
pred = preds[0].squeeze()
|
@@ -34,50 +37,32 @@ def process(image):
|
|
34 |
image.putalpha(mask)
|
35 |
return image
|
36 |
|
37 |
-
def
|
38 |
-
|
|
|
39 |
im = im.convert("RGB")
|
40 |
-
|
41 |
-
|
42 |
-
|
43 |
-
# JPG๋ก ๋ณํํ์ฌ ์ ์ฅ
|
44 |
-
jpg_image = origin.copy()
|
45 |
-
jpg_image = jpg_image.convert("RGB")
|
46 |
-
jpg_path = "output.jpg"
|
47 |
-
jpg_image.save(jpg_path, format="JPEG")
|
48 |
-
|
49 |
-
return [processed_image], jpg_path # ImageSlider๋ ๋ฆฌ์คํธ๋ฅผ ๊ธฐ๋ํจ
|
50 |
-
|
51 |
-
def convert_to_jpg(image):
|
52 |
-
if image is None:
|
53 |
-
return None
|
54 |
-
jpg_image = image.convert("RGB")
|
55 |
-
jpg_path = "downloaded_output.jpg"
|
56 |
-
jpg_image.save(jpg_path, format="JPEG")
|
57 |
-
return jpg_path
|
58 |
|
59 |
-
# Gradio ์ปดํฌ๋ํธ ์ ์
|
60 |
slider1 = ImageSlider(label="Processed Image", type="pil")
|
|
|
61 |
image_upload = gr.Image(label="Upload an image")
|
62 |
-
|
|
|
|
|
63 |
|
64 |
-
#
|
65 |
-
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
70 |
-
inputs=image_upload,
|
71 |
-
outputs=[slider1, output_download],
|
72 |
-
examples=sample_images,
|
73 |
-
api_name="image"
|
74 |
-
)
|
75 |
|
76 |
-
demo = gr.
|
77 |
-
tab1,
|
78 |
-
title="Background Removal Tool",
|
79 |
-
description="์ด๋ฏธ์ง๋ฅผ ์
๋ก๋ํ๋ฉด ๋ฐฐ๊ฒฝ์ด ์ ๊ฑฐ๋ ์ด๋ฏธ์ง๋ฅผ ํ์ธํ๊ณ JPG ํ์ผ๋ก ๋ค์ด๋ก๋ํ ์ ์์ต๋๋ค."
|
80 |
)
|
81 |
|
82 |
if __name__ == "__main__":
|
83 |
-
demo.launch(show_error=True)
|
|
|
1 |
+
# GPU ์ค์ ์ CPU๋ก ๋ณ๊ฒฝ
|
2 |
+
# GPU ์ค์ ์ ์ญ์ ํ๊ฑฐ๋ "cuda"๋ฅผ "cpu"๋ก ๋ณ๊ฒฝ
|
3 |
+
# torch.set_float32_matmul_precision("high")๋ CPU์์ ํ์ ์์.
|
|
|
|
|
|
|
|
|
|
|
4 |
|
|
|
5 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
6 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
7 |
)
|
8 |
birefnet.to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ
|
9 |
|
|
|
10 |
transform_image = transforms.Compose(
|
11 |
[
|
12 |
transforms.Resize((1024, 1024)),
|
|
|
15 |
]
|
16 |
)
|
17 |
|
18 |
+
def fn(image):
|
19 |
+
im = load_img(image, output_type="pil")
|
20 |
+
im = im.convert("RGB")
|
21 |
+
origin = im.copy()
|
22 |
+
processed_image = process(im)
|
23 |
+
return (processed_image, origin)
|
24 |
+
|
25 |
+
# @spaces.GPU ๋ฐ์ฝ๋ ์ดํฐ ์ ๊ฑฐ
|
26 |
+
# CPU ํ๊ฒฝ์์ ๋์ํ๋๋ก ์ค์
|
27 |
+
|
28 |
def process(image):
|
29 |
image_size = image.size
|
30 |
+
input_images = transform_image(image).unsqueeze(0).to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ
|
31 |
+
# Prediction
|
32 |
with torch.no_grad():
|
33 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
34 |
pred = preds[0].squeeze()
|
|
|
37 |
image.putalpha(mask)
|
38 |
return image
|
39 |
|
40 |
+
def process_file(f):
|
41 |
+
name_path = f.rsplit(".", 1)[0] + ".png"
|
42 |
+
im = load_img(f, output_type="pil")
|
43 |
im = im.convert("RGB")
|
44 |
+
transparent = process(im)
|
45 |
+
transparent.save(name_path)
|
46 |
+
return name_path
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
47 |
|
|
|
48 |
slider1 = ImageSlider(label="Processed Image", type="pil")
|
49 |
+
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
50 |
image_upload = gr.Image(label="Upload an image")
|
51 |
+
image_file_upload = gr.Image(label="Upload an image", type="filepath")
|
52 |
+
url_input = gr.Textbox(label="Paste an image URL")
|
53 |
+
output_file = gr.File(label="Output PNG File")
|
54 |
|
55 |
+
# Example images
|
56 |
+
chameleon = load_img("butterfly.jpg", output_type="pil")
|
57 |
+
url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
|
58 |
|
59 |
+
tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
|
60 |
+
tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
|
61 |
+
tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")
|
|
|
|
|
|
|
|
|
|
|
62 |
|
63 |
+
demo = gr.TabbedInterface(
|
64 |
+
[tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
|
|
|
|
|
65 |
)
|
66 |
|
67 |
if __name__ == "__main__":
|
68 |
+
demo.launch(show_error=True)
|