Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,15 +1,12 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_imageslider import ImageSlider
|
3 |
from loadimg import load_img
|
4 |
-
import spaces
|
5 |
from transformers import AutoModelForImageSegmentation
|
6 |
import torch
|
7 |
from torchvision import transforms
|
|
|
8 |
|
9 |
# GPU ์ค์ ์ CPU๋ก ๋ณ๊ฒฝ
|
10 |
-
# GPU ์ค์ ์ ์ญ์ ํ๊ฑฐ๋ "cuda"๋ฅผ "cpu"๋ก ๋ณ๊ฒฝ
|
11 |
-
# torch.set_float32_matmul_precision("high")๋ CPU์์ ํ์ ์์.
|
12 |
-
|
13 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
14 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
15 |
)
|
@@ -28,10 +25,11 @@ def fn(image):
|
|
28 |
im = im.convert("RGB")
|
29 |
origin = im.copy()
|
30 |
processed_image = process(im)
|
31 |
-
|
32 |
-
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
def process(image):
|
37 |
image_size = image.size
|
@@ -45,31 +43,41 @@ def process(image):
|
|
45 |
image.putalpha(mask)
|
46 |
return image
|
47 |
|
48 |
-
def
|
49 |
-
name_path = f.rsplit(".", 1)[0] + ".
|
50 |
im = load_img(f, output_type="pil")
|
51 |
im = im.convert("RGB")
|
52 |
transparent = process(im)
|
53 |
-
|
54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
55 |
|
56 |
-
slider1 = ImageSlider(label="Processed Image", type="pil")
|
57 |
-
slider2 = ImageSlider(label="Processed Image from URL", type="pil")
|
58 |
image_upload = gr.Image(label="Upload an image")
|
59 |
-
image_file_upload = gr.Image(label="Upload an image", type="filepath")
|
60 |
-
url_input = gr.Textbox(label="Paste an image URL")
|
61 |
-
output_file = gr.File(label="Output PNG File")
|
62 |
|
63 |
-
#
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
66 |
|
67 |
-
|
68 |
-
|
69 |
-
|
|
|
|
|
|
|
|
|
70 |
|
71 |
demo = gr.TabbedInterface(
|
72 |
-
[
|
|
|
|
|
73 |
)
|
74 |
|
75 |
if __name__ == "__main__":
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_imageslider import ImageSlider
|
3 |
from loadimg import load_img
|
|
|
4 |
from transformers import AutoModelForImageSegmentation
|
5 |
import torch
|
6 |
from torchvision import transforms
|
7 |
+
from io import BytesIO
|
8 |
|
9 |
# GPU ์ค์ ์ CPU๋ก ๋ณ๊ฒฝ
|
|
|
|
|
|
|
10 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
11 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
12 |
)
|
|
|
25 |
im = im.convert("RGB")
|
26 |
origin = im.copy()
|
27 |
processed_image = process(im)
|
28 |
+
# Convert processed image to JPEG
|
29 |
+
buffered = BytesIO()
|
30 |
+
processed_image.convert("RGB").save(buffered, format="JPEG")
|
31 |
+
buffered.seek(0)
|
32 |
+
return processed_image, buffered
|
33 |
|
34 |
def process(image):
|
35 |
image_size = image.size
|
|
|
43 |
image.putalpha(mask)
|
44 |
return image
|
45 |
|
46 |
+
def process_download(f):
|
47 |
+
name_path = f.rsplit(".", 1)[0] + ".jpg"
|
48 |
im = load_img(f, output_type="pil")
|
49 |
im = im.convert("RGB")
|
50 |
transparent = process(im)
|
51 |
+
# Convert to JPEG
|
52 |
+
buffered = BytesIO()
|
53 |
+
transparent.convert("RGB").save(buffered, format="JPEG")
|
54 |
+
buffered.seek(0)
|
55 |
+
return buffered
|
56 |
+
|
57 |
+
slider = ImageSlider(label="Processed Image", type="pil")
|
58 |
+
download_output = gr.File(label="Download JPG File")
|
59 |
|
|
|
|
|
60 |
image_upload = gr.Image(label="Upload an image")
|
|
|
|
|
|
|
61 |
|
62 |
+
# ์๋ก์ด ์ํ ์ด๋ฏธ์ง
|
63 |
+
sample_images = [
|
64 |
+
"1.png",
|
65 |
+
"2.jpg",
|
66 |
+
"3.png"
|
67 |
+
]
|
68 |
|
69 |
+
tab = gr.Interface(
|
70 |
+
fn=fn,
|
71 |
+
inputs=image_upload,
|
72 |
+
outputs=[slider, download_output],
|
73 |
+
examples=sample_images,
|
74 |
+
api_name="image"
|
75 |
+
)
|
76 |
|
77 |
demo = gr.TabbedInterface(
|
78 |
+
[tab],
|
79 |
+
["Image Upload"],
|
80 |
+
title="Background Removal Tool"
|
81 |
)
|
82 |
|
83 |
if __name__ == "__main__":
|