Spaces:
Running
Running
import gradio as gr | |
from gradio_imageslider import ImageSlider | |
from loadimg import load_img | |
import spaces | |
from transformers import AutoModelForImageSegmentation | |
import torch | |
from torchvision import transforms | |
from PIL import Image | |
import os | |
# ๋ชจ๋ธ ๋ก๋ ๋ฐ CPU๋ก ์ค์ | |
birefnet = AutoModelForImageSegmentation.from_pretrained( | |
"ZhengPeng7/BiRefNet", trust_remote_code=True | |
) | |
birefnet.to("cpu") # GPU -> CPU๋ก ๋ณ๊ฒฝ | |
# ์ด๋ฏธ์ง ์ ์ฒ๋ฆฌ | |
transform_image = transforms.Compose( | |
[ | |
transforms.Resize((1024, 1024)), | |
transforms.ToTensor(), | |
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]), | |
] | |
) | |
def process(image): | |
image_size = image.size | |
input_images = transform_image(image).unsqueeze(0).to("cpu") # CPU๋ก ๋ณ๊ฒฝ | |
# ์์ธก ์ํ | |
with torch.no_grad(): | |
preds = birefnet(input_images)[-1].sigmoid().cpu() | |
pred = preds[0].squeeze() | |
pred_pil = transforms.ToPILImage()(pred) | |
mask = pred_pil.resize(image_size) | |
image.putalpha(mask) | |
return image | |
def fn(image): | |
im = load_img(image, output_type="pil") | |
im = im.convert("RGB") | |
origin = im.copy() | |
processed_image = process(im) | |
# JPG๋ก ๋ณํํ์ฌ ์ ์ฅ | |
jpg_image = origin.copy() | |
jpg_image = jpg_image.convert("RGB") | |
jpg_path = "output.jpg" | |
jpg_image.save(jpg_path, format="JPEG") | |
return [processed_image], jpg_path # ImageSlider๋ ๋ฆฌ์คํธ๋ฅผ ๊ธฐ๋ํจ | |
def process_file(f): | |
name_path = f.rsplit(".", 1)[0] + ".png" | |
im = load_img(f, output_type="pil") | |
im = im.convert("RGB") | |
transparent = process(im) | |
transparent.save(name_path) | |
return name_path | |
# Gradio ์ปดํฌ๋ํธ ์ ์ | |
slider1 = ImageSlider(label="Processed Image", type="pil") | |
image_upload = gr.Image(label="Upload an image") | |
output_download = gr.File(label="Download JPG File") | |
# ์๋ก์ด ์ํ ์ด๋ฏธ์ง ์ถ๊ฐ (app.py์ ๋์ผํ ํด๋์ ์์นํด์ผ ํจ) | |
sample_images = ["1.png", "2.jpg", "3.png"] | |
# Gradio ์ธํฐํ์ด์ค ์ค์ | |
tab1 = gr.Interface( | |
fn=fn, | |
inputs=image_upload, | |
outputs=[slider1, output_download], | |
examples=sample_images, | |
api_name="image" | |
) | |
demo = gr.Interface( | |
tab1, | |
title="Background Removal Tool", | |
description="์ด๋ฏธ์ง๋ฅผ ์ ๋ก๋ํ๋ฉด ๋ฐฐ๊ฒฝ์ด ์ ๊ฑฐ๋ ์ด๋ฏธ์ง๋ฅผ ํ์ธํ๊ณ JPG ํ์ผ๋ก ๋ค์ด๋ก๋ํ ์ ์์ต๋๋ค." | |
) | |
if __name__ == "__main__": | |
demo.launch(show_error=True) | |