File size: 42,002 Bytes
d5fb63f
 
 
0fedf9f
d5fb63f
 
 
 
0fedf9f
d5fb63f
 
 
 
 
0fedf9f
 
 
 
 
 
 
 
d5fb63f
 
 
0fedf9f
d5fb63f
b4650b8
f8570dc
d5fb63f
 
 
 
 
 
 
 
 
 
0fedf9f
f8570dc
 
 
 
 
 
 
 
 
0fedf9f
 
 
 
 
 
 
 
 
 
f8570dc
 
 
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
f8570dc
0fedf9f
f8570dc
 
 
 
 
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
f8570dc
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8570dc
 
b4650b8
f8570dc
0fedf9f
 
 
d5fb63f
0fedf9f
d5fb63f
 
b4650b8
f8570dc
0fedf9f
f8570dc
0fedf9f
 
 
 
 
 
 
 
 
 
 
f8570dc
0fedf9f
 
f8570dc
 
0fedf9f
 
b4650b8
0fedf9f
 
f8570dc
0fedf9f
f8570dc
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f8570dc
b4650b8
d5fb63f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fedf9f
 
 
 
 
 
 
 
f8570dc
0fedf9f
 
 
 
 
 
 
 
 
d5fb63f
 
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5fb63f
f8570dc
c850803
0fedf9f
 
 
 
 
 
 
d5fb63f
 
 
 
 
0fedf9f
 
 
 
 
f8570dc
0fedf9f
 
 
 
 
 
 
 
 
 
d5fb63f
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5fb63f
f8570dc
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2c541cf
0fedf9f
 
2c541cf
0fedf9f
 
 
 
 
 
 
 
 
 
2c541cf
 
0fedf9f
b4650b8
fb6f347
c850803
0fedf9f
 
c850803
 
0fedf9f
 
fb6f347
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c850803
 
 
d5fb63f
0fedf9f
82bbb8a
 
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bbb8a
0fedf9f
 
82bbb8a
 
b4650b8
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4650b8
0fedf9f
 
fdac880
82bbb8a
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
82bbb8a
6faa7b9
0fedf9f
 
 
 
 
 
 
82bbb8a
6faa7b9
0fedf9f
 
 
 
 
 
82bbb8a
b4650b8
989a45c
 
0fedf9f
 
 
 
 
 
989a45c
0fedf9f
 
989a45c
 
6faa7b9
82bbb8a
6faa7b9
 
0fedf9f
6faa7b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0fedf9f
6faa7b9
0fedf9f
 
 
 
6faa7b9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
82bbb8a
6faa7b9
 
0fedf9f
 
771fcfc
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b4650b8
989a45c
0fedf9f
 
 
 
 
d5fb63f
 
0fedf9f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
d5fb63f
0fedf9f
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
import gradio as gr
import requests
from bs4 import BeautifulSoup
import urllib.parse # iframe 경둜 보정을 μœ„ν•œ λͺ¨λ“ˆ
import re
import logging
import tempfile
import pandas as pd
import mecab # python?mecab?ko 라이브러리 μ‚¬μš©
import os
import time
import hmac
import hashlib
import base64
from concurrent.futures import ThreadPoolExecutor, as_completed

# --- 병렬 처리 μ„€μ • ---
# API 호좜 μ œν•œμ— 맞좰 적절히 μ‘°μ ˆν•˜μ„Έμš”.
# λ„ˆλ¬΄ 높은 값은 API μ œν•œμ— 걸릴 수 μžˆμŠ΅λ‹ˆλ‹€.
MAX_WORKERS_RELATED_KEYWORDS = 5  # fetch_related_keywords 병렬 μž‘μ—…μž 수
MAX_WORKERS_BLOG_COUNT = 10       # fetch_blog_count 병렬 μž‘μ—…μž 수


# 디버깅(둜그)용 ν•¨μˆ˜
def debug_log(message: str):
    print(f"[{time.strftime('%Y-%m-%d %H:%M:%S')}] [DEBUG] {message}")

# --- 넀이버 λΈ”λ‘œκ·Έ μŠ€ν¬λž˜ν•‘ ---
def scrape_naver_blog(url: str) -> str:
    debug_log("scrape_naver_blog ν•¨μˆ˜ μ‹œμž‘")
    debug_log(f"μš”μ²­λ°›μ€ URL: {url}")
    headers = {
        "User-Agent": (
            "Mozilla/5.0 (Windows NT 10.0; Win64; x64) "
            "AppleWebKit/537.36 (KHTML, like Gecko) "
            "Chrome/96.0.4664.110 Safari/537.36"
        )
    }
    try:
        response = requests.get(url, headers=headers, timeout=10)
        debug_log("HTTP GET μš”μ²­(메인 νŽ˜μ΄μ§€) μ™„λ£Œ")
        if response.status_code != 200:
            debug_log(f"μš”μ²­ μ‹€νŒ¨, μƒνƒœμ½”λ“œ: {response.status_code}")
            return f"였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. μƒνƒœμ½”λ“œ: {response.status_code}"
        soup = BeautifulSoup(response.text, "html.parser")
        debug_log("HTML νŒŒμ‹±(메인 νŽ˜μ΄μ§€) μ™„λ£Œ")
        iframe = soup.select_one("iframe#mainFrame")
        if not iframe:
            debug_log("iframe#mainFrame νƒœκ·Έλ₯Ό 찾을 수 μ—†μŠ΅λ‹ˆλ‹€.")
            # 일뢀 λΈ”λ‘œκ·ΈλŠ” mainFrame이 없을 수 있음. λ³Έλ¬Έ 직접 μ‹œλ„
            content_div_direct = soup.select_one('.se-main-container')
            if content_div_direct:
                title_div_direct = soup.select_one('.se-module.se-module-text.se-title-text')
                title = title_div_direct.get_text(strip=True) if title_div_direct else "제λͺ©μ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
                content = content_div_direct.get_text("\n", strip=True)
                debug_log("iframe 없이 λ³Έλ¬Έ 직접 μΆ”μΆœ μ™„λ£Œ")
                return f"[제λͺ©]\n{title}\n\n[λ³Έλ¬Έ]\n{content}"
            return "λ³Έλ¬Έ iframe을 찾을 수 μ—†μŠ΅λ‹ˆλ‹€. (λ³Έλ¬Έ 직접 μΆ”μΆœ μ‹€νŒ¨)"

        iframe_src = iframe.get("src")
        if not iframe_src:
            debug_log("iframe srcκ°€ μ‘΄μž¬ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.")
            return "λ³Έλ¬Έ iframe의 srcλ₯Ό 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        
        # iframe_srcκ°€ μ ˆλŒ€ URL이 μ•„λ‹Œ 경우λ₯Ό λŒ€λΉ„
        if iframe_src.startswith("//"):
            parsed_iframe_url = "https:" + iframe_src
        elif iframe_src.startswith("/"):
            parsed_main_url = urllib.parse.urlparse(url)
            parsed_iframe_url = urllib.parse.urlunparse(
                (parsed_main_url.scheme, parsed_main_url.netloc, iframe_src, None, None, None)
            )
        else:
            parsed_iframe_url = urllib.parse.urljoin(url, iframe_src)
            
        debug_log(f"iframe νŽ˜μ΄μ§€ μš”μ²­ URL: {parsed_iframe_url}")
        iframe_response = requests.get(parsed_iframe_url, headers=headers, timeout=10)
        debug_log("HTTP GET μš”μ²­(iframe νŽ˜μ΄μ§€) μ™„λ£Œ")
        if iframe_response.status_code != 200:
            debug_log(f"iframe μš”μ²­ μ‹€νŒ¨, μƒνƒœμ½”λ“œ: {iframe_response.status_code}")
            return f"iframeμ—μ„œ 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€. μƒνƒœμ½”λ“œ: {iframe_response.status_code}"
        iframe_soup = BeautifulSoup(iframe_response.text, "html.parser")
        debug_log("HTML νŒŒμ‹±(iframe νŽ˜μ΄μ§€) μ™„λ£Œ")
        
        # 제λͺ© μΆ”μΆœ (λ‹€μ–‘ν•œ ꡬ쑰 μ‹œλ„)
        title_selectors = [
            '.se-module.se-module-text.se-title-text', # 일반적인 μŠ€λ§ˆνŠΈμ—λ””ν„° ONE
            '.title_text', # ꡬ버전 에디터 λ˜λŠ” λ‹€λ₯Έ ꡬ쑰
            'div[class*="title"] h3', 
            'h1', 'h2', 'h3' # 일반적인 제λͺ© νƒœκ·Έ
        ]
        title = "제λͺ©μ„ 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        for selector in title_selectors:
            title_div = iframe_soup.select_one(selector)
            if title_div:
                title = title_div.get_text(strip=True)
                break
        debug_log(f"μΆ”μΆœλœ 제λͺ©: {title}")

        # λ³Έλ¬Έ μΆ”μΆœ (λ‹€μ–‘ν•œ ꡬ쑰 μ‹œλ„)
        content_selectors = [
            '.se-main-container', # μŠ€λ§ˆνŠΈμ—λ””ν„° ONE
            'div#content',       # ꡬ버전 에디터
            'div.post_ct',       # 일뢀 λΈ”λ‘œκ·Έ ꡬ쑰
            'article', 'main'    # μ‹œλ§¨ν‹± νƒœκ·Έ
        ]
        content = "본문을 찾을 수 μ—†μŠ΅λ‹ˆλ‹€."
        for selector in content_selectors:
            content_div = iframe_soup.select_one(selector)
            if content_div:
                # λΆˆν•„μš”ν•œ 슀크립트, μŠ€νƒ€μΌ νƒœκ·Έ 제거
                for s in content_div(['script', 'style']):
                    s.decompose()
                content = content_div.get_text("\n", strip=True)
                break
        
        debug_log("λ³Έλ¬Έ μΆ”μΆœ μ™„λ£Œ")
        result = f"[제λͺ©]\n{title}\n\n[λ³Έλ¬Έ]\n{content}"
        debug_log("제λͺ©κ³Ό λ³Έλ¬Έ ν•©μΉ¨ μ™„λ£Œ")
        return result
    except requests.exceptions.Timeout:
        debug_log(f"μš”μ²­ μ‹œκ°„ 초과: {url}")
        return f"μŠ€ν¬λž˜ν•‘ 쀑 μ‹œκ°„ μ΄ˆκ³Όκ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {url}"
    except Exception as e:
        debug_log(f"μŠ€ν¬λž˜ν•‘ μ—λŸ¬ λ°œμƒ: {str(e)}")
        return f"μŠ€ν¬λž˜ν•‘ 쀑 였λ₯˜κ°€ λ°œμƒν–ˆμŠ΅λ‹ˆλ‹€: {str(e)}"

# --- ν˜•νƒœμ†Œ 뢄석 (μ°Έμ‘°μ½”λ“œ-1) ---
def analyze_text(text: str):
    logging.basicConfig(level=logging.INFO) # INFO 레벨둜 λ³€κ²½ν•˜μ—¬ λ„ˆλ¬΄ λ§Žμ€ 둜그 λ°©μ§€
    logger = logging.getLogger(__name__)
    # logger.debug("원본 ν…μŠ€νŠΈ: %s", text) # λ„ˆλ¬΄ κΈΈ 수 μžˆμœΌλ―€λ‘œ 주석 처리
    filtered_text = re.sub(r'[^κ°€-힣a-zA-Z0-9\s]', '', text) # μ˜μ–΄, 숫자, 곡백 포함
    # logger.debug("ν•„ν„°λ§λœ ν…μŠ€νŠΈ: %s", filtered_text)
    if not filtered_text.strip():
        logger.info("μœ νš¨ν•œ ν…μŠ€νŠΈκ°€ μ—†μŒ (필터링 ν›„).")
        return pd.DataFrame(columns=["단어", "λΉˆλ„μˆ˜"]), ""
    try:
        mecab_instance = mecab.MeCab()
        tokens = mecab_instance.pos(filtered_text)
    except Exception as e:
        logger.error(f"MeCab ν˜•νƒœμ†Œ 뢄석 쀑 였λ₯˜: {e}")
        return pd.DataFrame(columns=["단어", "λΉˆλ„μˆ˜"]), ""
        
    # logger.debug("ν˜•νƒœμ†Œ 뢄석 κ²°κ³Ό: %s", tokens)
    freq = {}
    for word, pos in tokens:
        # 일반λͺ…사(NNG), 고유λͺ…사(NNP), μ™Έκ΅­μ–΄(SL), 숫자(SN) λ“± 포함, ν•œ κΈ€μž λ‹¨μ–΄λŠ” μ œμ™Έ (선택 사항)
        if word and word.strip() and (pos.startswith("NN") or pos in ["SL", "SH"]) and len(word) > 1 :
            freq[word] = freq.get(word, 0) + 1
            # logger.debug("단어: %s, ν’ˆμ‚¬: %s, λΉˆλ„: %d", word, pos, freq[word])
            
    sorted_freq = sorted(freq.items(), key=lambda x: x[1], reverse=True)
    # logger.debug("μ •λ ¬λœ 단어 λΉˆλ„: %s", sorted_freq)
    df = pd.DataFrame(sorted_freq, columns=["단어", "λΉˆλ„μˆ˜"])
    logger.info(f"ν˜•νƒœμ†Œ 뢄석 DataFrame 생성됨, shape: {df.shape}")
    
    temp_file_path = ""
    if not df.empty:
        try:
            with tempfile.NamedTemporaryFile(delete=False, suffix=".xlsx", mode='w+b') as temp_file:
                df.to_excel(temp_file.name, index=False, engine='openpyxl')
                temp_file_path = temp_file.name
            logger.info(f"Excel 파일 생성됨: {temp_file_path}")
        except Exception as e:
            logger.error(f"Excel 파일 μ €μž₯ 쀑 였λ₯˜: {e}")
            temp_file_path = "" # 였λ₯˜ λ°œμƒ μ‹œ 경둜 μ΄ˆκΈ°ν™”

    return df, temp_file_path


# --- 넀이버 검색 및 κ΄‘κ³  API κ΄€λ ¨ (μ°Έμ‘°μ½”λ“œ-2) ---
def generate_signature(timestamp, method, uri, secret_key):
    message = f"{timestamp}.{method}.{uri}"
    digest = hmac.new(secret_key.encode("utf-8"), message.encode("utf-8"), hashlib.sha256).digest()
    return base64.b64encode(digest).decode()

def get_header(method, uri, api_key, secret_key, customer_id):
    timestamp = str(round(time.time() * 1000))
    signature = generate_signature(timestamp, method, uri, secret_key)
    return {
        "Content-Type": "application/json; charset=UTF-8",
        "X-Timestamp": timestamp,
        "X-API-KEY": api_key,
        "X-Customer": str(customer_id),
        "X-Signature": signature
    }

# API ν‚€ ν™˜κ²½ λ³€μˆ˜ 확인 ν•¨μˆ˜
def get_env_variable(var_name):
    value = os.environ.get(var_name)
    if value is None:
        debug_log(f"ν™˜κ²½ λ³€μˆ˜ '{var_name}'κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€. API 호좜이 μ‹€νŒ¨ν•  수 μžˆμŠ΅λ‹ˆλ‹€.")
        # ν•„μš”μ‹œ μ—¬κΈ°μ„œ raise Exception λ˜λŠ” κΈ°λ³Έκ°’ λ°˜ν™˜
    return value

def fetch_related_keywords(keyword):
    debug_log(f"fetch_related_keywords 호좜 μ‹œμž‘, ν‚€μ›Œλ“œ: {keyword}")
    API_KEY = get_env_variable("NAVER_API_KEY")
    SECRET_KEY = get_env_variable("NAVER_SECRET_KEY")
    CUSTOMER_ID = get_env_variable("NAVER_CUSTOMER_ID")
    
    if not all([API_KEY, SECRET_KEY, CUSTOMER_ID]):
        debug_log(f"넀이버 κ΄‘κ³  API ν‚€ 정보 λΆ€μ‘±μœΌλ‘œ '{keyword}' μ—°κ΄€ ν‚€μ›Œλ“œ 쑰회λ₯Ό κ±΄λ„ˆ<0xEB><0xB5>λ‹ˆλ‹€.")
        return pd.DataFrame()

    BASE_URL = "https://api.naver.com"
    uri = "/keywordstool"
    method = "GET"
    
    try:
        headers = get_header(method, uri, API_KEY, SECRET_KEY, CUSTOMER_ID)
        params = {
            "hintKeywords": keyword, # 단일 ν‚€μ›Œλ“œ λ¬Έμžμ—΄λ‘œ 전달
            "showDetail": "1"
        }
        # hintKeywordsλŠ” 리슀트둜 받을 수 μžˆμœΌλ‚˜, μ—¬κΈ°μ„œλŠ” 단일 ν‚€μ›Œλ“œ 처리λ₯Ό κ°€μ •ν•˜κ³  λ¬Έμžμ—΄λ‘œ 전달
        # λ§Œμ•½ APIκ°€ hintKeywordsλ₯Ό 리슀트둜만 λ°›λŠ”λ‹€λ©΄ [keyword]둜 μˆ˜μ • ν•„μš”
        
        response = requests.get(BASE_URL + uri, params=params, headers=headers, timeout=10)
        response.raise_for_status() # 였λ₯˜ λ°œμƒ μ‹œ μ˜ˆμ™Έ λ°œμƒ
        data = response.json()
        
        if "keywordList" not in data or not data["keywordList"]:
            debug_log(f"'{keyword}'에 λŒ€ν•œ μ—°κ΄€ ν‚€μ›Œλ“œ κ²°κ³Ό μ—†μŒ.")
            return pd.DataFrame() # 빈 DataFrame λ°˜ν™˜
            
        df = pd.DataFrame(data["keywordList"])
        
        # API 응닡에 ν•΄λ‹Ή 컬럼이 없을 경우λ₯Ό λŒ€λΉ„
        df["monthlyPcQcCnt"] = df.get("monthlyPcQcCnt", 0)
        df["monthlyMobileQcCnt"] = df.get("monthlyMobileQcCnt", 0)

        def parse_count(x):
            if pd.isna(x) or str(x).lower() == '< 10': # 넀이버 APIλŠ” 10 미만일 λ•Œ "< 10"으둜 λ°˜ν™˜
                return 5 # λ˜λŠ” 0, λ˜λŠ” λ‹€λ₯Έ λŒ€ν‘œκ°’ (예: 5)
            try:
                return int(str(x).replace(",", ""))
            except ValueError:
                return 0
                
        df["PCμ›”κ²€μƒ‰λŸ‰"] = df["monthlyPcQcCnt"].apply(parse_count)
        df["λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰"] = df["monthlyMobileQcCnt"].apply(parse_count)
        df["ν† νƒˆμ›”κ²€μƒ‰λŸ‰"] = df["PCμ›”κ²€μƒ‰λŸ‰"] + df["λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰"]
        df.rename(columns={"relKeyword": "μ •λ³΄ν‚€μ›Œλ“œ"}, inplace=True)
        
        # ν•„μš”ν•œ 컬럼만 선택, μ—†λŠ” 경우 λŒ€λΉ„
        required_cols = ["μ •λ³΄ν‚€μ›Œλ“œ", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰"]
        result_df = pd.DataFrame(columns=required_cols)
        for col in required_cols:
            if col in df.columns:
                result_df[col] = df[col]
            else: # ν•΄λ‹Ή 컬럼이 API 응닡에 없을 경우 κΈ°λ³Έκ°’μœΌλ‘œ 채움
                 if col == "μ •λ³΄ν‚€μ›Œλ“œ": # μ •λ³΄ν‚€μ›Œλ“œλŠ” ν•„μˆ˜
                     debug_log(f"API 응닡에 'relKeyword'κ°€ μ—†μŠ΅λ‹ˆλ‹€. '{keyword}' 처리 쀑단.")
                     return pd.DataFrame()
                 result_df[col] = 0

        debug_log(f"fetch_related_keywords '{keyword}' μ™„λ£Œ, κ²°κ³Ό {len(result_df)}개")
        return result_df.head(100) # μ΅œλŒ€ 100개둜 μ œν•œ
        
    except requests.exceptions.HTTPError as http_err:
        debug_log(f"HTTP 였λ₯˜ λ°œμƒ (fetch_related_keywords for '{keyword}'): {http_err} - 응닡: {response.text if 'response' in locals() else 'N/A'}")
    except requests.exceptions.RequestException as req_err:
        debug_log(f"μš”μ²­ 였λ₯˜ λ°œμƒ (fetch_related_keywords for '{keyword}'): {req_err}")
    except Exception as e:
        debug_log(f"μ•Œ 수 μ—†λŠ” 였λ₯˜ λ°œμƒ (fetch_related_keywords for '{keyword}'): {e}")
    return pd.DataFrame() # 였λ₯˜ λ°œμƒ μ‹œ 빈 DataFrame λ°˜ν™˜


def fetch_blog_count(keyword):
    debug_log(f"fetch_blog_count 호좜, ν‚€μ›Œλ“œ: {keyword}")
    client_id = get_env_variable("NAVER_SEARCH_CLIENT_ID")
    client_secret = get_env_variable("NAVER_SEARCH_CLIENT_SECRET")

    if not client_id or not client_secret:
        debug_log(f"넀이버 검색 API ν‚€ 정보 λΆ€μ‘±μœΌλ‘œ '{keyword}' λΈ”λ‘œκ·Έ 수 쑰회λ₯Ό κ±΄λ„ˆ<0xEB><0xB5>λ‹ˆλ‹€.")
        return 0

    url = "https://openapi.naver.com/v1/search/blog.json"
    headers = {
        "X-Naver-Client-Id": client_id,
        "X-Naver-Client-Secret": client_secret
    }
    params = {"query": keyword, "display": 1} # display=1둜 μ„€μ •ν•˜μ—¬ total κ°’λ§Œ λΉ λ₯΄κ²Œ 확인
    
    try:
        response = requests.get(url, headers=headers, params=params, timeout=5)
        response.raise_for_status() # HTTP 였λ₯˜ λ°œμƒ μ‹œ μ˜ˆμ™Έ λ°œμƒ
        data = response.json()
        total_count = data.get("total", 0)
        debug_log(f"fetch_blog_count κ²°κ³Ό: {total_count} for '{keyword}'")
        return total_count
    except requests.exceptions.HTTPError as http_err:
        debug_log(f"HTTP 였λ₯˜ λ°œμƒ (fetch_blog_count for '{keyword}'): {http_err} - 응닡: {response.text}")
    except requests.exceptions.RequestException as req_err: # Timeout, ConnectionError λ“±
        debug_log(f"μš”μ²­ 였λ₯˜ λ°œμƒ (fetch_blog_count for '{keyword}'): {req_err}")
    except Exception as e: # JSONDecodeError λ“± 기타 μ˜ˆμ™Έ
        debug_log(f"μ•Œ 수 μ—†λŠ” 였λ₯˜ λ°œμƒ (fetch_blog_count for '{keyword}'): {e}")
    return 0 # 였λ₯˜ λ°œμƒ μ‹œ 0 λ°˜ν™˜

def create_excel_file(df):
    if df.empty:
        debug_log("빈 DataFrame으둜 Excel νŒŒμΌμ„ μƒμ„±ν•˜μ§€ μ•ŠμŠ΅λ‹ˆλ‹€.")
        # 빈 νŒŒμΌμ„ μƒμ„±ν•˜κ±°λ‚˜, None을 λ°˜ν™˜ν•˜μ—¬ Gradioμ—μ„œ μ²˜λ¦¬ν•˜λ„λ‘ ν•  수 있음
        # μ—¬κΈ°μ„œλŠ” 빈 μž„μ‹œ νŒŒμΌμ„ μƒμ„±ν•˜μ—¬ λ°˜ν™˜ (Gradio File μ»΄ν¬λ„ŒνŠΈκ°€ 경둜λ₯Ό κΈ°λŒ€ν•˜λ―€λ‘œ)
        with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
            excel_path = tmp.name
        # 빈 μ—‘μ…€ νŒŒμΌμ— ν—€λ”λ§Œμ΄λΌλ„ 써주렀면
        # pd.DataFrame(columns=df.columns).to_excel(excel_path, index=False)
        # μ•„λ‹ˆλ©΄ κ·Έλƒ₯ 빈 νŒŒμΌμ„ λ°˜ν™˜
        return excel_path

    try:
        with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False, mode='w+b') as tmp:
            excel_path = tmp.name
        df.to_excel(excel_path, index=False, engine='openpyxl')
        debug_log(f"Excel 파일 생성됨: {excel_path}")
        return excel_path
    except Exception as e:
        debug_log(f"Excel 파일 생성 쀑 였λ₯˜: {e}")
        # 였λ₯˜ λ°œμƒ μ‹œ 빈 파일 κ²½λ‘œλΌλ„ λ°˜ν™˜ (Gradio ν˜Έν™˜μ„±)
        with tempfile.NamedTemporaryFile(suffix=".xlsx", delete=False) as tmp:
            return tmp.name


def process_keyword(keywords: str, include_related: bool):
    debug_log(f"process_keyword 호좜 μ‹œμž‘, ν‚€μ›Œλ“œλ“€: '{keywords[:100]}...', 연관검색어 포함: {include_related}")
    input_keywords_orig = [k.strip() for k in keywords.splitlines() if k.strip()]
    
    if not input_keywords_orig:
        debug_log("μž…λ ₯된 ν‚€μ›Œλ“œκ°€ μ—†μŠ΅λ‹ˆλ‹€.")
        return pd.DataFrame(columns=["μ •λ³΄ν‚€μ›Œλ“œ", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]), ""

    all_related_keywords_dfs = []
    
    # 1. fetch_related_keywords 병렬 처리
    debug_log(f"μ—°κ΄€ ν‚€μ›Œλ“œ 쑰회 병렬 처리 μ‹œμž‘ (μ΅œλŒ€ μž‘μ—…μž 수: {MAX_WORKERS_RELATED_KEYWORDS})")
    with ThreadPoolExecutor(max_workers=MAX_WORKERS_RELATED_KEYWORDS) as executor:
        future_to_keyword_related = {
            executor.submit(fetch_related_keywords, kw): kw for kw in input_keywords_orig
        }
        for i, future in enumerate(as_completed(future_to_keyword_related)):
            kw = future_to_keyword_related[future]
            try:
                df_kw_related = future.result() # DataFrame λ°˜ν™˜
                if not df_kw_related.empty:
                    # 원본 ν‚€μ›Œλ“œκ°€ 결과에 ν¬ν•¨λ˜μ–΄ μžˆλŠ”μ§€ ν™•μΈν•˜κ³ , μ—†μœΌλ©΄ μΆ”κ°€ μ‹œλ„ (APIκ°€ 항상 relKeyword둜 μžμ‹ μ„ μ£Όμ§„ μ•ŠμŒ)
                    # ν•˜μ§€λ§Œ fetch_related_keywordsμ—μ„œ 이미 hintKeywordλ₯Ό 기반으둜 κ²€μƒ‰ν•˜λ―€λ‘œ,
                    # μΌλ°˜μ μœΌλ‘œλŠ” ν•΄λ‹Ή ν‚€μ›Œλ“œ 정보가 μžˆκ±°λ‚˜, μ—°κ΄€ ν‚€μ›Œλ“œλ§Œ λ‚˜μ˜΄.
                    # μ—¬κΈ°μ„œλŠ” API 응닡을 κ·ΈλŒ€λ‘œ ν™œμš©.
                    
                    # 첫 번째 μž…λ ₯ ν‚€μ›Œλ“œμ΄κ³ , μ—°κ΄€ ν‚€μ›Œλ“œ 포함 μ˜΅μ…˜μ΄ 켜져 있으면 λͺ¨λ“  μ—°κ΄€ ν‚€μ›Œλ“œλ₯Ό μΆ”κ°€
                    # κ·Έ μ™Έμ˜ κ²½μš°μ—λŠ” ν•΄λ‹Ή ν‚€μ›Œλ“œ 자체의 μ •λ³΄λ§Œ (μžˆλ‹€λ©΄) μ‚¬μš©ν•˜κ±°λ‚˜, μ΅œμƒλ‹¨ ν‚€μ›Œλ“œ μ‚¬μš©
                    if include_related and kw == input_keywords_orig[0]:
                         all_related_keywords_dfs.append(df_kw_related)
                         debug_log(f"첫 번째 ν‚€μ›Œλ“œ '{kw}'의 λͺ¨λ“  μ—°κ΄€ ν‚€μ›Œλ“œ ({len(df_kw_related)}개) 좔가됨.")
                    else:
                        # ν•΄λ‹Ή ν‚€μ›Œλ“œμ™€ μΌμΉ˜ν•˜λŠ” 행을 μ°Ύκ±°λ‚˜, μ—†μœΌλ©΄ APIκ°€ λ°˜ν™˜ν•œ 첫번째 행을 μ‚¬μš©
                        row_kw = df_kw_related[df_kw_related["μ •λ³΄ν‚€μ›Œλ“œ"] == kw]
                        if not row_kw.empty:
                            all_related_keywords_dfs.append(row_kw)
                            debug_log(f"ν‚€μ›Œλ“œ '{kw}'의 직접 정보 좔가됨.")
                        elif not df_kw_related.empty : # 직접 μ •λ³΄λŠ” μ—†μ§€λ§Œ μ—°κ΄€ ν‚€μ›Œλ“œλŠ” μžˆμ„ λ•Œ
                            all_related_keywords_dfs.append(df_kw_related.head(1)) # κ°€μž₯ μ—°κ΄€μ„± 높은 ν‚€μ›Œλ“œ μΆ”κ°€
                            debug_log(f"ν‚€μ›Œλ“œ '{kw}'의 직접 μ •λ³΄λŠ” μ—†μœΌλ‚˜, κ°€μž₯ μ—°κ΄€μ„± 높은 ν‚€μ›Œλ“œ 1개 좔가됨.")
                        # else: ν‚€μ›Œλ“œ 정보도, μ—°κ΄€ 정보도 없을 λ•Œ (df_kw_relatedκ°€ λΉ„μ–΄μžˆμŒ)

                debug_log(f"'{kw}' μ—°κ΄€ ν‚€μ›Œλ“œ 처리 μ™„λ£Œ ({i+1}/{len(input_keywords_orig)})")
            except Exception as e:
                debug_log(f"'{kw}' μ—°κ΄€ ν‚€μ›Œλ“œ 쑰회 쀑 병렬 μž‘μ—… 였λ₯˜: {e}")

    if not all_related_keywords_dfs:
        debug_log("μ—°κ΄€ ν‚€μ›Œλ“œ 쑰회 κ²°κ³Όκ°€ λͺ¨λ‘ λΉ„μ–΄μžˆμŠ΅λ‹ˆλ‹€.")
        # 빈 DataFrame에 λΈ”λ‘œκ·Έ λ¬Έμ„œμˆ˜ 컬럼 μΆ”κ°€
        empty_df = pd.DataFrame(columns=["μ •λ³΄ν‚€μ›Œλ“œ", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰"])
        empty_df["λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"] = None
        return empty_df, create_excel_file(empty_df)

    result_df = pd.concat(all_related_keywords_dfs, ignore_index=True)
    result_df.drop_duplicates(subset=["μ •λ³΄ν‚€μ›Œλ“œ"], inplace=True) # 쀑볡 제거
    debug_log(f"μ—°κ΄€ ν‚€μ›Œλ“œ 병렬 처리 μ™„λ£Œ. ν†΅ν•©λœ DataFrame shape: {result_df.shape}")

    # 2. fetch_blog_count 병렬 처리
    keywords_for_blog_count = result_df["μ •λ³΄ν‚€μ›Œλ“œ"].dropna().unique().tolist()
    blog_counts_map = {}

    if keywords_for_blog_count:
        debug_log(f"λΈ”λ‘œκ·Έ λ¬Έμ„œ 수 쑰회 병렬 처리 μ‹œμž‘ (ν‚€μ›Œλ“œ {len(keywords_for_blog_count)}개, μ΅œλŒ€ μž‘μ—…μž 수: {MAX_WORKERS_BLOG_COUNT})")
        with ThreadPoolExecutor(max_workers=MAX_WORKERS_BLOG_COUNT) as executor:
            future_to_keyword_blog = {
                executor.submit(fetch_blog_count, kw): kw for kw in keywords_for_blog_count
            }
            for i, future in enumerate(as_completed(future_to_keyword_blog)):
                kw = future_to_keyword_blog[future]
                try:
                    count = future.result() # 숫자 λ°˜ν™˜
                    blog_counts_map[kw] = count
                    if (i+1) % 50 == 0: # λ„ˆλ¬΄ λ§Žμ€ 둜그 λ°©μ§€
                         debug_log(f"λΈ”λ‘œκ·Έ 수 쑰회 μ§„ν–‰ 쀑... ({i+1}/{len(keywords_for_blog_count)})")
                except Exception as e:
                    debug_log(f"'{kw}' λΈ”λ‘œκ·Έ 수 쑰회 쀑 병렬 μž‘μ—… 였λ₯˜: {e}")
                    blog_counts_map[kw] = 0 # 였λ₯˜ μ‹œ 0으둜 처리
        
        result_df["λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"] = result_df["μ •λ³΄ν‚€μ›Œλ“œ"].map(blog_counts_map).fillna(0).astype(int)
        debug_log("λΈ”λ‘œκ·Έ λ¬Έμ„œ 수 병렬 처리 μ™„λ£Œ.")
    else:
        result_df["λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"] = 0 # μ‘°νšŒν•  ν‚€μ›Œλ“œκ°€ μ—†μœΌλ©΄ 0으둜 채움

    result_df.sort_values(by="ν† νƒˆμ›”κ²€μƒ‰λŸ‰", ascending=False, inplace=True)
    debug_log(f"process_keyword μ΅œμ’… μ™„λ£Œ. DataFrame shape: {result_df.shape}")
    
    # μ΅œμ’… 컬럼 μˆœμ„œ 및 쑴재 μ—¬λΆ€ 확인
    final_columns = ["μ •λ³΄ν‚€μ›Œλ“œ", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]
    for col in final_columns:
        if col not in result_df.columns:
            result_df[col] = 0 if col != "μ •λ³΄ν‚€μ›Œλ“œ" else "" # μ—†λŠ” μ»¬λŸΌμ€ κΈ°λ³Έκ°’μœΌλ‘œ 채움
    
    result_df = result_df[final_columns] # 컬럼 μˆœμ„œ κ³ μ •

    return result_df, create_excel_file(result_df)


# --- ν˜•νƒœμ†Œ 뢄석과 κ²€μƒ‰λŸ‰/λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜ 병합 ---
def morphological_analysis_and_enrich(text: str, remove_freq1: bool):
    debug_log("morphological_analysis_and_enrich ν•¨μˆ˜ μ‹œμž‘")
    df_freq, _ = analyze_text(text) # μ—‘μ…€ 파일 κ²½λ‘œλŠ” μ—¬κΈ°μ„  μ‚¬μš© μ•ˆ 함
    
    if df_freq.empty:
        debug_log("ν˜•νƒœμ†Œ 뢄석 κ²°κ³Όκ°€ 빈 λ°μ΄ν„°ν”„λ ˆμž„μž…λ‹ˆλ‹€.")
        return pd.DataFrame(columns=["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]), ""

    if remove_freq1:
        before_count = len(df_freq)
        df_freq = df_freq[df_freq["λΉˆλ„μˆ˜"] > 1].copy() # .copy() μΆ”κ°€
        debug_log(f"λΉˆλ„μˆ˜ 1 제거 적용됨. {before_count} -> {len(df_freq)}")

    if df_freq.empty:
        debug_log("λΉˆλ„μˆ˜ 1 제거 ν›„ 데이터가 μ—†μŠ΅λ‹ˆλ‹€.")
        return pd.DataFrame(columns=["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]), ""

    keywords_from_morph = "\n".join(df_freq["단어"].tolist())
    debug_log(f"ν˜•νƒœμ†Œ 뢄석 기반 ν‚€μ›Œλ“œ ({len(df_freq['단어'])}개)에 λŒ€ν•œ 정보 쑰회 μ‹œμž‘")
    
    # process_keywordλŠ” μ—°κ΄€ ν‚€μ›Œλ“œλ₯Ό ν¬ν•¨ν•˜μ§€ μ•Šλ„λ‘ 호좜 (include_related=False)
    df_keyword_info, _ = process_keyword(keywords_from_morph, include_related=False)
    debug_log("ν˜•νƒœμ†Œ 뢄석 ν‚€μ›Œλ“œμ— λŒ€ν•œ κ²€μƒ‰λŸ‰ 및 λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜ 쑰회 μ™„λ£Œ")

    if df_keyword_info.empty:
        debug_log("ν˜•νƒœμ†Œ 뢄석 ν‚€μ›Œλ“œμ— λŒ€ν•œ API 정보 쑰회 κ²°κ³Όκ°€ μ—†μŠ΅λ‹ˆλ‹€.")
        # df_freq에 빈 μ»¬λŸΌλ“€ μΆ”κ°€
        for col in ["PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]:
            df_freq[col] = None
        merged_df = df_freq
    else:
        merged_df = pd.merge(df_freq, df_keyword_info, left_on="단어", right_on="μ •λ³΄ν‚€μ›Œλ“œ", how="left")
        if "μ •λ³΄ν‚€μ›Œλ“œ" in merged_df.columns: # merge ν›„ μ •λ³΄ν‚€μ›Œλ“œ 컬럼이 생겼닀면 μ‚­μ œ
            merged_df.drop(columns=["μ •λ³΄ν‚€μ›Œλ“œ"], inplace=True, errors='ignore')

    # λˆ„λ½λœ 컬럼 κΈ°λ³Έκ°’μœΌλ‘œ μ±„μš°κΈ°
    expected_cols = ["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]
    for col in expected_cols:
        if col not in merged_df.columns:
            merged_df[col] = None if col not in ["λΉˆλ„μˆ˜"] else 0
    
    merged_df = merged_df[expected_cols] # 컬럼 μˆœμ„œ κ³ μ •

    merged_excel_path = create_excel_file(merged_df)
    debug_log("morphological_analysis_and_enrich ν•¨μˆ˜ μ™„λ£Œ")
    return merged_df, merged_excel_path


# --- 직접 ν‚€μ›Œλ“œ 뢄석 (단독 뢄석) ---
def direct_keyword_analysis(text: str, keyword_input: str):
    debug_log("direct_keyword_analysis ν•¨μˆ˜ μ‹œμž‘")
    direct_keywords_list = [kw.strip() for kw in re.split(r'[\n,]+', keyword_input) if kw.strip()]
    debug_log(f"μž…λ ₯된 직접 ν‚€μ›Œλ“œ λͺ©λ‘: {direct_keywords_list}")

    if not direct_keywords_list:
        debug_log("직접 μž…λ ₯된 ν‚€μ›Œλ“œκ°€ μ—†μŠ΅λ‹ˆλ‹€.")
        return pd.DataFrame(columns=["ν‚€μ›Œλ“œ", "λΉˆλ„μˆ˜"]), ""

    # 1. λ³Έλ¬Έ λ‚΄ λΉˆλ„μˆ˜ 계산
    results_freq = []
    for kw in direct_keywords_list:
        count = text.count(kw) # λŒ€μ†Œλ¬Έμž ꡬ뢄, μ •ν™•ν•œ λ¬Έμžμ—΄ 카운트
        results_freq.append({"ν‚€μ›Œλ“œ": kw, "λΉˆλ„μˆ˜": count})
        debug_log(f"직접 ν‚€μ›Œλ“œ '{kw}'의 λ³Έλ¬Έ λ‚΄ λΉˆλ„μˆ˜: {count}")
    df_direct_freq = pd.DataFrame(results_freq)

    # 2. APIλ₯Ό 톡해 κ²€μƒ‰λŸ‰ 및 λΈ”λ‘œκ·Έ 수 쑰회 (병렬 처리된 process_keyword μ‚¬μš©)
    # μ—¬κΈ°μ„œλŠ” 각 직접 ν‚€μ›Œλ“œμ— λŒ€ν•œ μ •λ³΄λ§Œ ν•„μš”ν•˜λ―€λ‘œ include_related=False
    keywords_for_api = "\n".join(direct_keywords_list)
    df_direct_api_info, _ = process_keyword(keywords_for_api, include_related=False)

    # 3. λΉˆλ„μˆ˜ 결과와 API κ²°κ³Ό 병합
    if not df_direct_api_info.empty:
        # API 결과의 'μ •λ³΄ν‚€μ›Œλ“œ'λ₯Ό 'ν‚€μ›Œλ“œ'둜 λ³€κ²½ν•˜μ—¬ 병합 κΈ°μ€€ 톡일
        df_direct_api_info.rename(columns={"μ •λ³΄ν‚€μ›Œλ“œ": "ν‚€μ›Œλ“œ"}, inplace=True)
        merged_df = pd.merge(df_direct_freq, df_direct_api_info, on="ν‚€μ›Œλ“œ", how="left")
    else:
        merged_df = df_direct_freq
        for col in ["PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]:
            merged_df[col] = None # API 정보가 없을 경우 빈 컬럼 μΆ”κ°€

    # 컬럼 μˆœμ„œ 및 κΈ°λ³Έκ°’ 정리
    final_cols = ["ν‚€μ›Œλ“œ", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]
    for col in final_cols:
        if col not in merged_df.columns:
            merged_df[col] = 0 if col != "ν‚€μ›Œλ“œ" else ""
    merged_df = merged_df[final_cols]


    excel_path = create_excel_file(merged_df)
    debug_log("direct_keyword_analysis ν•¨μˆ˜ μ™„λ£Œ")
    return merged_df, excel_path


# --- 톡합 뢄석 (ν˜•νƒœμ†Œ 뢄석 + 직접 ν‚€μ›Œλ“œ 뢄석) ---
def combined_analysis(blog_text: str, remove_freq1: bool, direct_keyword_input: str):
    debug_log("combined_analysis ν•¨μˆ˜ μ‹œμž‘")
    
    # 1. ν˜•νƒœμ†Œ 뢄석 기반 κ²°κ³Ό (API 정보 포함)
    df_morph, _ = morphological_analysis_and_enrich(blog_text, remove_freq1)
    # df_morph 컬럼: "단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"
    
    # 2. 직접 μž…λ ₯ ν‚€μ›Œλ“œ 처리
    direct_keywords_list = [kw.strip() for kw in re.split(r'[\n,]+', direct_keyword_input) if kw.strip()]
    debug_log(f"톡합 뢄석 - μž…λ ₯된 직접 ν‚€μ›Œλ“œ: {direct_keywords_list}")

    if not direct_keywords_list: # 직접 μž…λ ₯ ν‚€μ›Œλ“œκ°€ μ—†μœΌλ©΄ ν˜•νƒœμ†Œ 뢄석 결과만 λ°˜ν™˜
        if "μ§μ ‘μž…λ ₯" not in df_morph.columns and not df_morph.empty:
             df_morph["μ§μ ‘μž…λ ₯"] = "" # μ§μ ‘μž…λ ₯ 컬럼 μΆ”κ°€
        # 컬럼 μˆœμ„œ μ‘°μ •
        cols = ["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜", "μ§μ ‘μž…λ ₯"]
        for col in cols:
            if col not in df_morph.columns:
                 df_morph[col] = "" if col == "μ§μ ‘μž…λ ₯" else (0 if col != "단어" else "")
        df_morph = df_morph[cols]
        return df_morph, create_excel_file(df_morph)

    # 직접 μž…λ ₯ ν‚€μ›Œλ“œμ— λŒ€ν•œ 정보 (λΉˆλ„μˆ˜, API 정보) κ°€μ Έμ˜€κΈ°
    # direct_keyword_analysisλŠ” "ν‚€μ›Œλ“œ" μ»¬λŸΌμ„ μ‚¬μš©ν•˜λ―€λ‘œ, df_morph의 "단어"와 톡일 ν•„μš”
    df_direct_raw, _ = direct_keyword_analysis(blog_text, direct_keyword_input)
    # df_direct_raw 컬럼: "ν‚€μ›Œλ“œ", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"
    df_direct_raw.rename(columns={"ν‚€μ›Œλ“œ": "단어"}, inplace=True) # 컬럼λͺ… 톡일

    # ν˜•νƒœμ†Œ 뢄석 결과에 'μ§μ ‘μž…λ ₯' ν‘œκΈ°
    if not df_morph.empty:
        df_morph["μ§μ ‘μž…λ ₯"] = df_morph["단어"].apply(lambda x: "μ§μ ‘μž…λ ₯" if x in direct_keywords_list else "")
    else: # ν˜•νƒœμ†Œ 뢄석 κ²°κ³Όκ°€ λΉ„μ–΄μžˆμ„ 수 있음
        df_morph = pd.DataFrame(columns=["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜", "μ§μ ‘μž…λ ₯"])


    # 직접 μž…λ ₯된 ν‚€μ›Œλ“œ 쀑 ν˜•νƒœμ†Œ 뢄석 결과에 μ—†λŠ” 것듀을 μΆ”κ°€
    # df_direct_rawμ—λŠ” λͺ¨λ“  직접 μž…λ ₯ ν‚€μ›Œλ“œμ˜ 정보가 있음
    
    # df_morph와 df_direct_rawλ₯Ό ν•©μΉ˜λ˜, '단어' κΈ°μ€€μœΌλ‘œ 쀑볡 처리
    # λ¨Όμ € df_direct_raw에 'μ§μ ‘μž…λ ₯' μ»¬λŸΌμ„ μΆ”κ°€ν•˜κ³  "μ§μ ‘μž…λ ₯"으둜 채움
    df_direct_raw["μ§μ ‘μž…λ ₯"] = "μ§μ ‘μž…λ ₯"
    
    # df_morph에 μžˆλŠ” λ‹¨μ–΄λŠ” df_morph 정보λ₯Ό μš°μ„  μ‚¬μš© (μ§μ ‘μž…λ ₯ ν”Œλž˜κ·Έλ§Œ μ—…λ°μ΄νŠΈ)
    # df_direct_rawμ—μ„œ df_morph에 μ—†λŠ” λ‹¨μ–΄λ§Œ κ³¨λΌμ„œ μΆ”κ°€
    
    # ν•©μΉ˜κΈ°: df_morphλ₯Ό κΈ°μ€€μœΌλ‘œ df_direct_raw의 정보λ₯Ό μΆ”κ°€/μ—…λ°μ΄νŠΈ
    # Pandas 0.25.0 μ΄μƒμ—μ„œλŠ” combine_first의 overwrite λ™μž‘μ΄ μ•½κ°„ λ‹€λ₯Ό 수 μžˆμœΌλ―€λ‘œ merge μ‚¬μš© κ³ λ €
    
    # 1. df_morph의 단어듀에 λŒ€ν•΄ df_direct_raw의 μ •λ³΄λ‘œ μ—…λ°μ΄νŠΈ (API 정보 λ“±)
    #    단, λΉˆλ„μˆ˜λŠ” 각자 κ³„μ‚°ν•œ 것을 μœ μ§€ν• μ§€, μ•„λ‹ˆλ©΄ ν•œμͺ½μ„ 택할지 κ²°μ • ν•„μš”.
    #    μ—¬κΈ°μ„œλŠ” df_morph의 λΉˆλ„μˆ˜(ν˜•νƒœμ†ŒλΆ„μ„ 기반)와 df_direct_raw의 λΉˆλ„μˆ˜(λ‹¨μˆœ count)κ°€ λ‹€λ₯Ό 수 있음.
    #    일단은 df_morph κΈ°μ€€μœΌλ‘œ ν•˜κ³ , μ—†λŠ” 직접 ν‚€μ›Œλ“œλ§Œ df_direct_rawμ—μ„œ μΆ”κ°€ν•˜λŠ” 방식.

    # df_morph의 'μ§μ ‘μž…λ ₯' μ»¬λŸΌμ€ 이미 μœ„μ—μ„œ 처리됨.
    # 이제 df_direct_rawμ—λ§Œ μžˆλŠ” ν‚€μ›Œλ“œλ₯Ό df_morph에 μΆ”κ°€
    
    # df_morph에 μžˆλŠ” 단어 λͺ©λ‘
    morph_words = df_morph['단어'].tolist() if not df_morph.empty else []
    
    rows_to_add = []
    for idx, row in df_direct_raw.iterrows():
        if row['단어'] not in morph_words:
            rows_to_add.append(row)
            
    if rows_to_add:
        df_to_add = pd.DataFrame(rows_to_add)
        combined_df = pd.concat([df_morph, df_to_add], ignore_index=True)
    else:
        combined_df = df_morph.copy() # df_morphκ°€ λΉ„μ–΄μžˆμ„ μˆ˜λ„ 있음

    # μ΅œμ’… 컬럼 정리 및 μˆœμ„œ
    final_cols_combined = ["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜", "μ§μ ‘μž…λ ₯"]
    for col in final_cols_combined:
        if col not in combined_df.columns:
            # κΈ°λ³Έκ°’ μ„€μ •: 'μ§μ ‘μž…λ ₯'은 "", λ‚˜λ¨Έμ§€λŠ” 0 λ˜λŠ” None (API 값은 None ν—ˆμš©)
            if col == "μ§μ ‘μž…λ ₯":
                combined_df[col] = ""
            elif col == "λΉˆλ„μˆ˜":
                 combined_df[col] = 0
            elif col == "단어":
                 combined_df[col] = ""
            else: # API κ΄€λ ¨ 컬럼
                 combined_df[col] = None # pd.NA도 κ°€λŠ₯

    # NA 값듀을 적절히 처리 (예: 0으둜 μ±„μš°κ±°λ‚˜ κ·ΈλŒ€λ‘œ 두기)
    # API 값듀은 μˆ«μžκ°€ 아닐 수 μžˆμœΌλ―€λ‘œ (예: "< 10"), process_keywordμ—μ„œ 처리됨. μ—¬κΈ°μ„œλŠ” intν˜• λ³€ν™˜ μ „μ΄λ―€λ‘œ κ·ΈλŒ€λ‘œ λ‘ .
    # Gradio Dataframe은 None을 잘 ν‘œμ‹œν•¨.
    # λΉˆλ„μˆ˜λŠ” μ •μˆ˜ν˜•μ΄μ–΄μ•Ό 함
    if "λΉˆλ„μˆ˜" in combined_df.columns:
        combined_df["λΉˆλ„μˆ˜"] = combined_df["λΉˆλ„μˆ˜"].fillna(0).astype(int)


    combined_df = combined_df[final_cols_combined].drop_duplicates(subset=['단어'], keep='first') # λ§Œμ•½μ„ μœ„ν•œ 쀑볡 제거
    combined_df.sort_values(by=["μ§μ ‘μž…λ ₯", "λΉˆλ„μˆ˜"], ascending=[False, False], inplace=True, na_position='last') # μ§μ ‘μž…λ ₯ μš°μ„ , κ·Έ λ‹€μŒ λΉˆλ„μˆ˜
    combined_df.reset_index(drop=True, inplace=True)

    combined_excel = create_excel_file(combined_df)
    debug_log("combined_analysis ν•¨μˆ˜ μ™„λ£Œ")
    return combined_df, combined_excel


# --- 뢄석 ν•Έλ“€λŸ¬ ---
def analysis_handler(blog_text: str, remove_freq1: bool, direct_keyword_input: str, direct_keyword_only: bool):
    debug_log(f"analysis_handler ν•¨μˆ˜ μ‹œμž‘. 직접 ν‚€μ›Œλ“œλ§Œ 뢄석: {direct_keyword_only}")
    start_time = time.time()

    if not blog_text or blog_text.strip() == "μŠ€ν¬λž˜ν•‘λœ λΈ”λ‘œκ·Έ λ‚΄μš©μ΄ 여기에 ν‘œμ‹œλ©λ‹ˆλ‹€." or blog_text.strip() == "":
        debug_log("뢄석할 λΈ”λ‘œκ·Έ λ‚΄μš©μ΄ μ—†μŠ΅λ‹ˆλ‹€.")
        # 빈 κ²°κ³Όλ₯Ό λ°˜ν™˜ν•˜κΈ° μœ„ν•œ DataFrame ꡬ쑰 λͺ…μ‹œ
        empty_cols_direct = ["ν‚€μ›Œλ“œ", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]
        empty_cols_combined = ["단어", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜", "μ§μ ‘μž…λ ₯"]
        df_empty = pd.DataFrame(columns=empty_cols_direct if direct_keyword_only else empty_cols_combined)
        return df_empty, create_excel_file(df_empty)


    if direct_keyword_only:
        # "직접 ν‚€μ›Œλ“œ μž…λ ₯만 뢄석" 선택 μ‹œ 단독 뢄석 μˆ˜ν–‰
        if not direct_keyword_input or not direct_keyword_input.strip():
            debug_log("직접 ν‚€μ›Œλ“œλ§Œ 뢄석 μ„ νƒλ˜μ—ˆμœΌλ‚˜, μž…λ ₯된 직접 ν‚€μ›Œλ“œκ°€ μ—†μŠ΅λ‹ˆλ‹€.")
            empty_cols_direct = ["ν‚€μ›Œλ“œ", "λΉˆλ„μˆ˜", "PCμ›”κ²€μƒ‰λŸ‰", "λͺ¨λ°”μΌμ›”κ²€μƒ‰λŸ‰", "ν† νƒˆμ›”κ²€μƒ‰λŸ‰", "λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜"]
            df_empty = pd.DataFrame(columns=empty_cols_direct)
            return df_empty, create_excel_file(df_empty)
        
        result_df, excel_path = direct_keyword_analysis(blog_text, direct_keyword_input)
    else:
        # κΈ°λ³Έ 톡합 뢄석 μˆ˜ν–‰
        result_df, excel_path = combined_analysis(blog_text, remove_freq1, direct_keyword_input)
    
    end_time = time.time()
    debug_log(f"analysis_handler 총 μ‹€ν–‰ μ‹œκ°„: {end_time - start_time:.2f} 초")
    return result_df, excel_path


# --- μŠ€ν¬λž˜ν•‘ μ‹€ν–‰ ---
def fetch_blog_content(url: str):
    debug_log("fetch_blog_content ν•¨μˆ˜ μ‹œμž‘")
    if not url or not url.strip():
        return "λΈ”λ‘œκ·Έ URL을 μž…λ ₯ν•΄μ£Όμ„Έμš”."
    if not url.startswith("http://") and not url.startswith("https://"):
        return "μœ νš¨ν•œ URL ν˜•μ‹(http:// λ˜λŠ” https://)으둜 μž…λ ₯ν•΄μ£Όμ„Έμš”."
    
    start_time = time.time()
    content = scrape_naver_blog(url)
    end_time = time.time()
    debug_log(f"fetch_blog_content 총 μ‹€ν–‰ μ‹œκ°„: {end_time - start_time:.2f} 초. λ‚΄μš© 길이: {len(content)}")
    return content

# --- Custom CSS ---
custom_css = """
/* 전체 μ»¨ν…Œμ΄λ„ˆ μŠ€νƒ€μΌ */
.gradio-container {
    max-width: 1080px; /* λ„ˆλΉ„ ν™•μž₯ */
    margin: auto;
    font-family: 'Helvetica Neue', Arial, sans-serif;
    background: #f5f7fa;
    padding: 2rem;
}

/* 헀더 μŠ€νƒ€μΌ */
.custom-header {
    text-align: center;
    font-size: 2.5rem;
    font-weight: bold;
    margin-bottom: 1.5rem;
    color: #333;
}

/* κ·Έλ£Ή λ°•μŠ€ μŠ€νƒ€μΌ */
.custom-group {
    background: #ffffff;
    border-radius: 8px;
    padding: 1.5rem;
    box-shadow: 0 2px 8px rgba(0,0,0,0.1);
    margin-bottom: 1.5rem;
}

/* λ²„νŠΌ μŠ€νƒ€μΌ */
.custom-button {
    background-color: #007bff;
    color: #fff;
    border: none;
    border-radius: 4px;
    padding: 0.6rem 1.2rem;
    font-size: 1rem;
    cursor: pointer;
    min-width: 150px; /* λ²„νŠΌ μ΅œμ†Œ λ„ˆλΉ„ */
}
.custom-button:hover {
    background-color: #0056b3;
}


/* μ²΄ν¬λ°•μŠ€ μŠ€νƒ€μΌ */
.custom-checkbox {
    margin-right: 1rem;
}

/* κ²°κ³Ό ν…Œμ΄λΈ” 및 λ‹€μš΄λ‘œλ“œ λ²„νŠΌ */
.custom-result {
    margin-top: 1.5rem;
}

/* κ°€μš΄λ° μ •λ ¬ */
.centered {
    display: flex;
    justify-content: center;
    align-items: center;
}
"""

# --- Gradio μΈν„°νŽ˜μ΄μŠ€ ꡬ성 ---
with gr.Blocks(title="넀이버 λΈ”λ‘œκ·Έ ν‚€μ›Œλ“œ 뢄석 μ„œλΉ„μŠ€", css=custom_css) as demo:
    gr.HTML("<div class='custom-header'>넀이버 λΈ”λ‘œκ·Έ ν‚€μ›Œλ“œ 뢄석 μ„œλΉ„μŠ€</div>")
    
    with gr.Row():
        with gr.Column(scale=2): # μ™Όμͺ½ 컬럼 (μž…λ ₯ μ˜μ—­)
            with gr.Group(elem_classes="custom-group"):
                blog_url_input = gr.Textbox(
                    label="넀이버 λΈ”λ‘œκ·Έ 링크", 
                    placeholder="예: https://blog.naver.com/아이디/κΈ€λ²ˆν˜Έ", 
                    lines=1,
                    info="뢄석할 넀이버 λΈ”λ‘œκ·Έ κ²Œμ‹œλ¬Ό URL을 μž…λ ₯ν•˜μ„Έμš”."
                )
                with gr.Row(elem_classes="centered"):
                    scrape_button = gr.Button("λΈ”λ‘œκ·Έ λ‚΄μš© κ°€μ Έμ˜€κΈ°", elem_classes="custom-button", variant="primary")
            
            with gr.Group(elem_classes="custom-group"):
                blog_content_box = gr.Textbox(
                    label="λΈ”λ‘œκ·Έ λ‚΄μš© (μˆ˜μ • κ°€λŠ₯)", 
                    lines=10, 
                    placeholder="μŠ€ν¬λž˜ν•‘λœ λΈ”λ‘œκ·Έ λ‚΄μš©μ΄ 여기에 ν‘œμ‹œλ©λ‹ˆλ‹€. 직접 μˆ˜μ •ν•˜κ±°λ‚˜ 뢙여넣을 수 μžˆμŠ΅λ‹ˆλ‹€."
                )
            
            with gr.Group(elem_classes="custom-group"):
                gr.Markdown("### 뢄석 μ˜΅μ…˜ μ„€μ •")
                with gr.Row():
                    remove_freq_checkbox = gr.Checkbox(
                        label="λΉˆλ„μˆ˜ 1인 단어 제거 (ν˜•νƒœμ†Œ 뢄석 μ‹œ)", 
                        value=True, 
                        elem_classes="custom-checkbox",
                        info="ν˜•νƒœμ†Œ 뢄석 κ²°κ³Όμ—μ„œ λΉˆλ„μˆ˜κ°€ 1인 단어λ₯Ό μ œμ™Έν•©λ‹ˆλ‹€."
                    )
                with gr.Row():
                    direct_keyword_only_checkbox = gr.Checkbox(
                        label="직접 ν‚€μ›Œλ“œλ§Œ 뢄석", 
                        value=False, 
                        elem_classes="custom-checkbox",
                        info="이 μ˜΅μ…˜μ„ μ„ νƒν•˜λ©΄ μ•„λž˜ μž…λ ₯ν•œ 직접 ν‚€μ›Œλ“œμ— λŒ€ν•΄μ„œλ§Œ 뢄석을 μˆ˜ν–‰ν•©λ‹ˆλ‹€ (ν˜•νƒœμ†Œ 뢄석 μƒλž΅)."
                    )
                with gr.Row():
                    direct_keyword_box = gr.Textbox(
                        label="직접 ν‚€μ›Œλ“œ μž…λ ₯ (μ—”ν„° λ˜λŠ” ','둜 ꡬ뢄)", 
                        lines=3, 
                        placeholder="예: ν‚€μ›Œλ“œ1, ν‚€μ›Œλ“œ2\nν‚€μ›Œλ“œ3\n...\n(ν˜•νƒœμ†Œ 뢄석 결과와 λ³„λ„λ‘œ λΆ„μ„ν•˜κ±°λ‚˜, 톡합 뢄석에 μΆ”κ°€ν•  ν‚€μ›Œλ“œ)",
                        info="뢄석에 ν¬ν•¨ν•˜κ±°λ‚˜ λ‹¨λ…μœΌλ‘œ 뢄석할 ν‚€μ›Œλ“œλ₯Ό 직접 μž…λ ₯ν•©λ‹ˆλ‹€."
                    )
            
            with gr.Group(elem_classes="custom-group"):
                with gr.Row(elem_classes="centered"):
                    analyze_button = gr.Button("ν‚€μ›Œλ“œ 뢄석 μ‹€ν–‰", elem_classes="custom-button", variant="primary")

        with gr.Column(scale=3): # 였λ₯Έμͺ½ 컬럼 (κ²°κ³Ό μ˜μ—­)
            with gr.Group(elem_classes="custom-group custom-result"):
                gr.Markdown("### 뢄석 κ²°κ³Ό")
                result_df_display = gr.Dataframe(
                    label="톡합 뢄석 κ²°κ³Ό (단어, λΉˆλ„μˆ˜, κ²€μƒ‰λŸ‰, λΈ”λ‘œκ·Έλ¬Έμ„œμˆ˜, μ§μ ‘μž…λ ₯ μ—¬λΆ€)", 
                    interactive=False, # μ‚¬μš©μžκ°€ 직접 μˆ˜μ • λΆˆκ°€
                    height=600, # 높이 쑰절
                    wrap=True # κΈ΄ ν…μŠ€νŠΈ μ€„λ°”κΏˆ
                )
            with gr.Group(elem_classes="custom-group"):
                gr.Markdown("### κ²°κ³Ό λ‹€μš΄λ‘œλ“œ")
                excel_file_display = gr.File(label="뢄석 κ²°κ³Ό Excel 파일 λ‹€μš΄λ‘œλ“œ")

    # 이벀트 μ—°κ²°
    scrape_button.click(fn=fetch_blog_content, inputs=blog_url_input, outputs=blog_content_box)
    analyze_button.click(
        fn=analysis_handler,
        inputs=[blog_content_box, remove_freq_checkbox, direct_keyword_box, direct_keyword_only_checkbox],
        outputs=[result_df_display, excel_file_display]
    )

if __name__ == "__main__":
    # ν™˜κ²½ λ³€μˆ˜ μ„€μ • μ˜ˆμ‹œ (μ‹€μ œ μ‹€ν–‰ μ‹œμ—λŠ” μ‹œμŠ€ν…œ ν™˜κ²½ λ³€μˆ˜λ‘œ μ„€μ •ν•˜κ±°λ‚˜, .env 파일 등을 μ‚¬μš©)
    # os.environ["NAVER_API_KEY"] = "YOUR_NAVER_API_KEY"
    # os.environ["NAVER_SECRET_KEY"] = "YOUR_NAVER_SECRET_KEY"
    # os.environ["NAVER_CUSTOMER_ID"] = "YOUR_NAVER_CUSTOMER_ID"
    # os.environ["NAVER_SEARCH_CLIENT_ID"] = "YOUR_NAVER_SEARCH_CLIENT_ID"
    # os.environ["NAVER_SEARCH_CLIENT_SECRET"] = "YOUR_NAVER_SEARCH_CLIENT_SECRET"

    # ν™˜κ²½ λ³€μˆ˜ μ„€μ • 확인
    required_env_vars = [
        "NAVER_API_KEY", "NAVER_SECRET_KEY", "NAVER_CUSTOMER_ID",
        "NAVER_SEARCH_CLIENT_ID", "NAVER_SEARCH_CLIENT_SECRET"
    ]
    missing_vars = [var for var in required_env_vars if not os.environ.get(var)]
    if missing_vars:
        debug_log(f"κ²½κ³ : λ‹€μŒ ν•„μˆ˜ ν™˜κ²½ λ³€μˆ˜κ°€ μ„€μ •λ˜μ§€ μ•Šμ•˜μŠ΅λ‹ˆλ‹€ - {', '.join(missing_vars)}")
        debug_log("API 호좜 κΈ°λŠ₯이 μ •μƒμ μœΌλ‘œ λ™μž‘ν•˜μ§€ μ•Šμ„ 수 μžˆμŠ΅λ‹ˆλ‹€.")
        debug_log("슀크립트 μ‹€ν–‰ 전에 ν•΄λ‹Ή ν™˜κ²½ λ³€μˆ˜λ₯Ό μ„€μ •ν•΄μ£Όμ„Έμš”.")
        # Gradio 앱은 μ‹€ν–‰ν•˜λ˜, API 호좜 μ‹œ 였λ₯˜κ°€ λ°œμƒν•  수 μžˆμŒμ„ μ‚¬μš©μžμ—κ²Œ μ•Œλ¦Ό.

    debug_log("Gradio μ•± μ‹€ν–‰ μ‹œμž‘")
    demo.launch(debug=True) # 개발 μ€‘μ—λŠ” debug=True둜 μ„€μ •ν•˜μ—¬ 였λ₯˜ 확인 용이
    debug_log("Gradio μ•± μ‹€ν–‰ μ’…λ£Œ")