import gradio as gr from huggingface_hub import InferenceClient import openai import anthropic import os from typing import Optional ############################# # [기본코드] - 수정/삭제 불가 ############################# # Cohere Command R+ 모델 ID 정의 COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024" def get_client(model_name): """ 모델 이름에 맞춰 InferenceClient 생성. 토큰은 환경 변수에서 가져옴. """ hf_token = os.getenv("HF_TOKEN") if not hf_token: raise ValueError("HuggingFace API 토큰이 필요합니다.") if model_name == "Cohere Command R+": model_id = COHERE_MODEL else: raise ValueError("유효하지 않은 모델 이름입니다.") return InferenceClient(model_id, token=hf_token) def respond_cohere_qna( question: str, system_message: str, max_tokens: int, temperature: float, top_p: float ): """ Cohere Command R+ 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수. """ model_name = "Cohere Command R+" try: client = get_client(model_name) except ValueError as e: return f"오류: {str(e)}" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": question} ] try: response_full = client.chat_completion( messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) assistant_message = response_full.choices[0].message.content return assistant_message except Exception as e: return f"오류가 발생했습니다: {str(e)}" def respond_chatgpt_qna( question: str, system_message: str, max_tokens: int, temperature: float, top_p: float ): """ ChatGPT(OpenAI) 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수. """ openai_token = os.getenv("OPENAI_TOKEN") if not openai_token: return "OpenAI API 토큰이 필요합니다." openai.api_key = openai_token messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": question} ] try: response = openai.ChatCompletion.create( model="gpt-4o-mini", messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) assistant_message = response.choices[0].message['content'] return assistant_message except Exception as e: return f"오류가 발생했습니다: {str(e)}" def respond_deepseek_qna( question: str, system_message: str, max_tokens: int, temperature: float, top_p: float, model_name: str # 모델 이름 추가 ): """ DeepSeek 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수. """ deepseek_token = os.getenv("DEEPSEEK_TOKEN") if not deepseek_token: return "DeepSeek API 토큰이 필요합니다." openai.api_key = deepseek_token openai.api_base = "https://api.deepseek.com/v1" messages = [ {"role": "system", "content": system_message}, {"role": "user", "content": question} ] try: response = openai.ChatCompletion.create( model=model_name, # 선택된 모델 사용 messages=messages, max_tokens=max_tokens, temperature=temperature, top_p=top_p, ) assistant_message = response.choices[0].message['content'] return assistant_message except Exception as e: return f"오류가 발생했습니다: {str(e)}" def respond_claude_qna( question: str, system_message: str, max_tokens: int, temperature: float, top_p: float, model_name: str # 모델 이름 파라미터 추가 ) -> str: """ Claude API를 사용한 개선된 응답 생성 함수. """ claude_api_key = os.getenv("CLAUDE_TOKEN") if not claude_api_key: return "Claude API 토큰이 필요합니다." try: client = anthropic.Anthropic(api_key=claude_api_key) message = client.messages.create( model=model_name, max_tokens=max_tokens, temperature=temperature, system=system_message, messages=[ {"role": "user", "content": question} ] ) return message.content[0].text except anthropic.APIError as ae: return f"Claude API 오류: {str(ae)}" except anthropic.RateLimitError: return "요청 한도를 초과했습니다. 잠시 후 다시 시도해주세요." except Exception as e: return f"예상치 못한 오류가 발생했습니다: {str(e)}" def respond_o1mini_qna( question: str, system_message: str, max_tokens: int, temperature: float ): """ o1-mini 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수. o1-mini에서는 'system' 메시지를 지원하지 않으므로 system_message와 question을 하나의 'user' 메시지로 합쳐 전달합니다. 또한, o1-mini에서는 'max_tokens' 대신 'max_completion_tokens'를 사용하며, temperature는 고정값 1만 지원합니다. """ openai_token = os.getenv("OPENAI_TOKEN") if not openai_token: return "OpenAI API 토큰이 필요합니다." openai.api_key = openai_token combined_message = f"{system_message}\n\n{question}" messages = [{"role": "user", "content": combined_message}] try: response = openai.ChatCompletion.create( model="o1-mini", messages=messages, max_completion_tokens=max_tokens, temperature=1, # 고정된 값 1 사용 ) assistant_message = response.choices[0].message['content'] return assistant_message except Exception as e: return f"오류가 발생했습니다: {str(e)}" def respond_gemini_qna( question: str, system_message: str, max_tokens: int, temperature: float, top_p: float, # top_p는 Gemini API에서 지원되면 전달됩니다. model_id: str ): """ Gemini 모델(예: "gemini-2.0-flash", "gemini-2.0-flash-lite-preview-02-05")을 이용해 질문(question)에 대한 답변을 반환하는 함수. 최신 google-generativeai 라이브러리를 사용합니다. """ import os try: import google.generativeai as genai except ModuleNotFoundError: return ("오류가 발생했습니다: 'google-generativeai' 모듈을 찾을 수 없습니다. " "해결 방법: 'pip install --upgrade google-generativeai' 를 실행하여 설치해주세요.") gemini_api_key = os.getenv("GEMINI_API_KEY") if not gemini_api_key: return "Gemini API 토큰이 필요합니다." # API 키 설정 genai.configure(api_key=gemini_api_key) # system_message와 question을 하나의 프롬프트로 결합 prompt = f"{system_message}\n\n{question}" try: # 최신 SDK에서는 GenerativeModel 클래스를 사용합니다. model = genai.GenerativeModel(model_name=model_id) response = model.generate_content(prompt) return response.text except Exception as e: return f"오류가 발생했습니다: {str(e)}" ############################# # [기본코드] UI 부분 - 수정/삭제 불가 (탭 순서: OpenAI, Gemini, Claude, DeepSeek, Cohere Command R+) ############################# with gr.Blocks() as demo: gr.Markdown("# LLM 플레이그라운드") ################# # OpenAI 탭 (gpt-4o-mini / o1-mini 통합) ################# with gr.Tab("OpenAI"): openai_model_radio = gr.Radio( choices=["gpt-4o-mini", "o1-mini"], label="모델 선택", value="gpt-4o-mini" ) with gr.Column(visible=True) as chatgpt_ui: chatgpt_input1_o = gr.Textbox(label="입력1", lines=1) chatgpt_input2_o = gr.Textbox(label="입력2", lines=1) chatgpt_input3_o = gr.Textbox(label="입력3", lines=1) chatgpt_input4_o = gr.Textbox(label="입력4", lines=1) chatgpt_input5_o = gr.Textbox(label="입력5", lines=1) chatgpt_answer_output_o = gr.Textbox(label="결과", lines=5, interactive=False) with gr.Accordion("고급 설정 (gpt-4o-mini)", open=False): chatgpt_system_message_o = gr.Textbox( value="""반드시 한글로 답변할 것. 너는 ChatGPT, OpenAI에서 개발한 언어 모델이다. 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라. """, label="System Message", lines=3 ) chatgpt_max_tokens_o = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens") chatgpt_temperature_o = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") chatgpt_top_p_o = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") chatgpt_submit_button_o = gr.Button("전송") def merge_and_call_chatgpt_o(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_): question = " ".join([i1, i2, i3, i4, i5]) return respond_chatgpt_qna( question=question, system_message=sys_msg, max_tokens=mt, temperature=temp, top_p=top_p_ ) chatgpt_submit_button_o.click( fn=merge_and_call_chatgpt_o, inputs=[ chatgpt_input1_o, chatgpt_input2_o, chatgpt_input3_o, chatgpt_input4_o, chatgpt_input5_o, chatgpt_system_message_o, chatgpt_max_tokens_o, chatgpt_temperature_o, chatgpt_top_p_o ], outputs=chatgpt_answer_output_o ) with gr.Column(visible=False) as o1mini_ui: o1mini_input1_o = gr.Textbox(label="입력1", lines=1) o1mini_input2_o = gr.Textbox(label="입력2", lines=1) o1mini_input3_o = gr.Textbox(label="입력3", lines=1) o1mini_input4_o = gr.Textbox(label="입력4", lines=1) o1mini_input5_o = gr.Textbox(label="입력5", lines=1) o1mini_answer_output_o = gr.Textbox(label="결과", lines=5, interactive=False) with gr.Accordion("고급 설정 (o1-mini)", open=False): o1mini_system_message_o = gr.Textbox( value="""반드시 한글로 답변할 것. 너는 o1-mini, OpenAI에서 개발한 경량 언어 모델이다. 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라. """, label="System Message", lines=3 ) o1mini_max_tokens_o = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens") o1mini_temperature_o = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") o1mini_submit_button_o = gr.Button("전송") def merge_and_call_o1mini_o(i1, i2, i3, i4, i5, sys_msg, mt, temp): question = " ".join([i1, i2, i3, i4, i5]) return respond_o1mini_qna( question=question, system_message=sys_msg, max_tokens=mt, temperature=temp ) o1mini_submit_button_o.click( fn=merge_and_call_o1mini_o, inputs=[ o1mini_input1_o, o1mini_input2_o, o1mini_input3_o, o1mini_input4_o, o1mini_input5_o, o1mini_system_message_o, o1mini_max_tokens_o, o1mini_temperature_o ], outputs=o1mini_answer_output_o ) def update_openai_ui(model_choice): if model_choice == "gpt-4o-mini": return gr.update(visible=True), gr.update(visible=False) else: return gr.update(visible=False), gr.update(visible=True) openai_model_radio.change( fn=update_openai_ui, inputs=openai_model_radio, outputs=[chatgpt_ui, o1mini_ui] ) ################# # Gemini 탭 ################# with gr.Tab("Gemini"): gemini_model_radio = gr.Radio( choices=["gemini-2.0-flash", "gemini-2.0-flash-lite-preview-02-05"], label="모델 선택", value="gemini-2.0-flash" ) gemini_input1 = gr.Textbox(label="입력1", lines=1) gemini_input2 = gr.Textbox(label="입력2", lines=1) gemini_input3 = gr.Textbox(label="입력3", lines=1) gemini_input4 = gr.Textbox(label="입력4", lines=1) gemini_input5 = gr.Textbox(label="입력5", lines=1) gemini_answer_output = gr.Textbox(label="결과", lines=5, interactive=False) with gr.Accordion("고급 설정 (Gemini)", open=False): gemini_system_message = gr.Textbox( value="""반드시 한글로 답변할 것. 너는 Gemini 모델이다. 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라. """, label="System Message", lines=3 ) gemini_max_tokens = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens") gemini_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") gemini_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") gemini_submit_button = gr.Button("전송") def merge_and_call_gemini(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, model_radio): question = " ".join([i1, i2, i3, i4, i5]) return respond_gemini_qna( question=question, system_message=sys_msg, max_tokens=mt, temperature=temp, top_p=top_p_, model_id=model_radio ) gemini_submit_button.click( fn=merge_and_call_gemini, inputs=[ gemini_input1, gemini_input2, gemini_input3, gemini_input4, gemini_input5, gemini_system_message, gemini_max_tokens, gemini_temperature, gemini_top_p, gemini_model_radio ], outputs=gemini_answer_output ) ################# # Claude 탭 ################# with gr.Tab("Claude"): claude_model_radio = gr.Radio( choices=[ "claude-3-haiku-20240307", "claude-3-5-haiku-20241022", "claude-3-5-sonnet-20241022" ], label="모델 선택", value="claude-3-5-sonnet-20241022" ) claude_input1 = gr.Textbox(label="입력1", lines=1) claude_input2 = gr.Textbox(label="입력2", lines=1) claude_input3 = gr.Textbox(label="입력3", lines=1) claude_input4 = gr.Textbox(label="입력4", lines=1) claude_input5 = gr.Textbox(label="입력5", lines=1) claude_answer_output = gr.Textbox(label="결과", interactive=False, lines=5) with gr.Accordion("고급 설정 (Claude)", open=False): claude_system_message = gr.Textbox( label="System Message", value="""반드시 한글로 답변할 것. 너는 Anthropic에서 개발한 클로드이다. 최대한 정확하고 친절하게 답변하라. """, lines=3 ) claude_max_tokens = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens") claude_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") claude_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p") claude_submit_button = gr.Button("전송") def merge_and_call_claude(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, model_radio): question = " ".join([i1, i2, i3, i4, i5]) return respond_claude_qna( question=question, system_message=sys_msg, max_tokens=mt, temperature=temp, top_p=top_p_, model_name=model_radio ) claude_submit_button.click( fn=merge_and_call_claude, inputs=[ claude_input1, claude_input2, claude_input3, claude_input4, claude_input5, claude_system_message, claude_max_tokens, claude_temperature, claude_top_p, claude_model_radio ], outputs=claude_answer_output ) ################# # DeepSeek 탭 ################# with gr.Tab("DeepSeek"): deepseek_model_radio = gr.Radio( choices=["V3 (deepseek-chat)", "R1 (deepseek-reasoner)"], label="모델 선택", value="V3 (deepseek-chat)" ) deepseek_input1 = gr.Textbox(label="입력1", lines=1) deepseek_input2 = gr.Textbox(label="입력2", lines=1) deepseek_input3 = gr.Textbox(label="입력3", lines=1) deepseek_input4 = gr.Textbox(label="입력4", lines=1) deepseek_input5 = gr.Textbox(label="입력5", lines=1) deepseek_answer_output = gr.Textbox(label="결과", lines=5, interactive=False) with gr.Accordion("고급 설정 (DeepSeek)", open=False): deepseek_system_message = gr.Textbox( value="""반드시 한글로 답변할 것. 너는 DeepSeek-V3, 최고의 언어 모델이다. 내가 요구하는 것을 최대한 자세하고 정확하게 답변하라. """, label="System Message", lines=3 ) deepseek_max_tokens = gr.Slider(minimum=100, maximum=4000, value=2000, step=100, label="Max Tokens") deepseek_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature") deepseek_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") deepseek_submit_button = gr.Button("전송") def merge_and_call_deepseek(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, model_radio): if model_radio == "V3 (deepseek-chat)": model_name = "deepseek-chat" else: model_name = "deepseek-reasoner" question = " ".join([i1, i2, i3, i4, i5]) return respond_deepseek_qna( question=question, system_message=sys_msg, max_tokens=mt, temperature=temp, top_p=top_p_, model_name=model_name ) deepseek_submit_button.click( fn=merge_and_call_deepseek, inputs=[ deepseek_input1, deepseek_input2, deepseek_input3, deepseek_input4, deepseek_input5, deepseek_system_message, deepseek_max_tokens, deepseek_temperature, deepseek_top_p, deepseek_model_radio ], outputs=deepseek_answer_output ) ################# # Cohere Command R+ 탭 ################# with gr.Tab("Cohere Command R+"): cohere_input1 = gr.Textbox(label="입력1", lines=1) cohere_input2 = gr.Textbox(label="입력2", lines=1) cohere_input3 = gr.Textbox(label="입력3", lines=1) cohere_input4 = gr.Textbox(label="입력4", lines=1) cohere_input5 = gr.Textbox(label="입력5", lines=1) cohere_answer_output = gr.Textbox(label="결과", lines=5, interactive=False) with gr.Accordion("고급 설정 (Cohere)", open=False): cohere_system_message = gr.Textbox( value="""반드시 한글로 답변할 것. 너는 최고의 비서이다. 내가 요구하는것들을 최대한 자세하고 정확하게 답변하라. """, label="System Message", lines=3 ) cohere_max_tokens = gr.Slider(minimum=100, maximum=10000, value=4000, step=100, label="Max Tokens") cohere_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.1, label="Temperature") cohere_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P") cohere_submit_button = gr.Button("전송") def merge_and_call_cohere(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_): question = " ".join([i1, i2, i3, i4, i5]) return respond_cohere_qna( question=question, system_message=sys_msg, max_tokens=mt, temperature=temp, top_p=top_p_ ) cohere_submit_button.click( fn=merge_and_call_cohere, inputs=[ cohere_input1, cohere_input2, cohere_input3, cohere_input4, cohere_input5, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p ], outputs=cohere_answer_output ) ############################# # 메인 실행부 ############################# if __name__ == "__main__": demo.launch()