Spaces:
Sleeping
Sleeping
File size: 7,608 Bytes
b34f0d5 7dcc8af b34f0d5 7dcc8af b34f0d5 7dcc8af 23d8e09 7dcc8af b34f0d5 7dcc8af b34f0d5 7dcc8af b34f0d5 7dcc8af b34f0d5 7dcc8af b34f0d5 7dcc8af 23d8e09 7dcc8af b34f0d5 23d8e09 b34f0d5 7dcc8af 23d8e09 7dcc8af b34f0d5 23d8e09 7dcc8af b34f0d5 23d8e09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
import gradio as gr
from huggingface_hub import InferenceClient
import os
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Microsoft": "microsoft/Phi-3-mini-4k-instruct",
"Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Aya-23-35B": "CohereForAI/aya-23-35B"
}
def get_client(model_name):
model_id = MODELS[model_name]
hf_token = os.getenv("HF_TOKEN")
if not hf_token:
raise ValueError("HF_TOKEN 환경 변수가 필요합니다.")
return InferenceClient(model_id, token=hf_token)
def respond(
message,
chat_history,
model_name,
max_tokens,
temperature,
top_p,
system_message,
):
try:
client = get_client(model_name)
except ValueError as e:
chat_history.append((message, str(e)))
return chat_history
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
messages.append({"role": "user", "content": human})
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
try:
if "Cohere" in model_name:
# Cohere 모델을 위한 비스트리밍 처리
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response.choices[0].message.content
chat_history.append((message, assistant_message))
yield chat_history
else:
# 다른 모델들을 위한 스트리밍 처리
stream = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=True,
)
partial_message = ""
for response in stream:
if response.choices[0].delta.content is not None:
partial_message += response.choices[0].delta.content
if len(chat_history) > 0 and chat_history[-1][0] == message:
chat_history[-1] = (message, partial_message)
else:
chat_history.append((message, partial_message))
yield chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
yield chat_history
def clear_conversation():
return []
# Cohere Command R+ 전용 응답 함수
from openai import OpenAI
ACCESS_TOKEN = os.getenv("HF_TOKEN")
cohere_client = OpenAI(
base_url="https://api-inference.huggingface.co/v1/",
api_key=ACCESS_TOKEN,
)
def cohere_respond(
message,
chat_history,
system_message,
max_tokens,
temperature,
top_p,
):
messages = [{"role": "system", "content": system_message}]
for human, assistant in chat_history:
if human:
messages.append({"role": "user", "content": human})
if assistant:
messages.append({"role": "assistant", "content": assistant})
messages.append({"role": "user", "content": message})
response = ""
try:
for msg in cohere_client.chat.completions.create(
model="CohereForAI/c4ai-command-r-plus-08-2024",
max_tokens=max_tokens,
stream=True,
temperature=temperature,
top_p=top_p,
messages=messages,
):
token = msg.choices[0].delta.content
response += token
if len(chat_history) > 0 and chat_history[-1][0] == message:
chat_history[-1] = (message, response)
else:
chat_history.append((message, response))
yield chat_history
except Exception as e:
error_message = f"오류가 발생했습니다: {str(e)}"
chat_history.append((message, error_message))
yield chat_history
with gr.Blocks() as demo:
gr.Markdown("# Prompting AI Chatbot")
gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")
with gr.Tab("일반 모델"):
with gr.Row():
with gr.Column(scale=1):
model_name = gr.Radio(
choices=list(MODELS.keys()),
label="Language Model",
value="Zephyr 7B Beta"
)
max_tokens = gr.Slider(minimum=0, maximum=2000, value=500, step=100, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
with gr.Column(scale=2):
chatbot = gr.Chatbot()
msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
submit_button = gr.Button("전송")
clear_button = gr.Button("대화 내역 지우기")
msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
clear_button.click(clear_conversation, outputs=chatbot, queue=False)
with gr.Tab("Cohere Command R+"):
with gr.Row():
cohere_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
cohere_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
cohere_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
cohere_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-P",
)
cohere_chatbot = gr.Chatbot(height=600)
cohere_msg = gr.Textbox(label="메세지를 입력하세요")
with gr.Row():
cohere_submit_button = gr.Button("전송")
cohere_clear_button = gr.Button("대화 내역 지우기")
cohere_msg.submit(
cohere_respond,
[cohere_msg, cohere_chatbot, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p],
cohere_chatbot
)
cohere_submit_button.click(
cohere_respond,
[cohere_msg, cohere_chatbot, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p],
cohere_chatbot
)
cohere_clear_button.click(clear_conversation, outputs=cohere_chatbot, queue=False)
if __name__ == "__main__":
demo.launch()
|