File size: 7,608 Bytes
b34f0d5
7dcc8af
 
b34f0d5
7dcc8af
 
 
 
 
 
 
 
 
b34f0d5
7dcc8af
 
 
 
23d8e09
7dcc8af
b34f0d5
7dcc8af
 
 
 
 
b34f0d5
7dcc8af
 
b34f0d5
7dcc8af
 
 
 
 
b34f0d5
7dcc8af
 
 
 
 
b34f0d5
7dcc8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d8e09
7dcc8af
 
 
 
 
b34f0d5
23d8e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b34f0d5
7dcc8af
 
23d8e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcc8af
 
 
 
 
 
b34f0d5
23d8e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcc8af
b34f0d5
23d8e09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
import gradio as gr
from huggingface_hub import InferenceClient
import os

MODELS = {
    "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
    "Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "Microsoft": "microsoft/Phi-3-mini-4k-instruct",
    "Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
    "Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Aya-23-35B": "CohereForAI/aya-23-35B"
}

def get_client(model_name):
    model_id = MODELS[model_name]
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise ValueError("HF_TOKEN 환경 변수가 필요합니다.")
    return InferenceClient(model_id, token=hf_token)

def respond(
    message,
    chat_history,
    model_name,
    max_tokens,
    temperature,
    top_p,
    system_message,
):
    try:
        client = get_client(model_name)
    except ValueError as e:
        chat_history.append((message, str(e)))
        return chat_history

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})

    try:
        if "Cohere" in model_name:
            # Cohere 모델을 위한 비스트리밍 처리
            response = client.chat_completion(
                messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p,
            )
            assistant_message = response.choices[0].message.content
            chat_history.append((message, assistant_message))
            yield chat_history
        else:
            # 다른 모델들을 위한 스트리밍 처리
            stream = client.chat_completion(
                messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p,
                stream=True,
            )
            partial_message = ""
            for response in stream:
                if response.choices[0].delta.content is not None:
                    partial_message += response.choices[0].delta.content
                    if len(chat_history) > 0 and chat_history[-1][0] == message:
                        chat_history[-1] = (message, partial_message)
                    else:
                        chat_history.append((message, partial_message))
                    yield chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        yield chat_history

def clear_conversation():
    return []

# Cohere Command R+ 전용 응답 함수
from openai import OpenAI

ACCESS_TOKEN = os.getenv("HF_TOKEN")

cohere_client = OpenAI(
    base_url="https://api-inference.huggingface.co/v1/",
    api_key=ACCESS_TOKEN,
)

def cohere_respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    messages = [{"role": "system", "content": system_message}]

    for human, assistant in chat_history:
        if human:
            messages.append({"role": "user", "content": human})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    response = ""
    
    try:
        for msg in cohere_client.chat.completions.create(
            model="CohereForAI/c4ai-command-r-plus-08-2024",
            max_tokens=max_tokens,
            stream=True,
            temperature=temperature,
            top_p=top_p,
            messages=messages,
        ):
            token = msg.choices[0].delta.content
            response += token
            if len(chat_history) > 0 and chat_history[-1][0] == message:
                chat_history[-1] = (message, response)
            else:
                chat_history.append((message, response))
            yield chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        yield chat_history

with gr.Blocks() as demo:
    gr.Markdown("# Prompting AI Chatbot")
    gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")
    
    with gr.Tab("일반 모델"):
        with gr.Row():
            with gr.Column(scale=1):
                model_name = gr.Radio(
                    choices=list(MODELS.keys()),
                    label="Language Model",
                    value="Zephyr 7B Beta"
                )
                max_tokens = gr.Slider(minimum=0, maximum=2000, value=500, step=100, label="Max Tokens")
                temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
                top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
                system_message = gr.Textbox(
                    value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
                    label="System Message",
                    lines=3
                )
    
            with gr.Column(scale=2):
                chatbot = gr.Chatbot()
                msg = gr.Textbox(label="메세지를 입력하세요")
                with gr.Row():
                    submit_button = gr.Button("전송")
                    clear_button = gr.Button("대화 내역 지우기")
    
        msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
        submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
        clear_button.click(clear_conversation, outputs=chatbot, queue=False)
    
    with gr.Tab("Cohere Command R+"):
        with gr.Row():
            cohere_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            cohere_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
            cohere_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
            cohere_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        cohere_chatbot = gr.Chatbot(height=600)
        cohere_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            cohere_submit_button = gr.Button("전송")
            cohere_clear_button = gr.Button("대화 내역 지우기")
        
        cohere_msg.submit(
            cohere_respond,
            [cohere_msg, cohere_chatbot, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p],
            cohere_chatbot
        )
        cohere_submit_button.click(
            cohere_respond,
            [cohere_msg, cohere_chatbot, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p],
            cohere_chatbot
        )
        cohere_clear_button.click(clear_conversation, outputs=cohere_chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()