Spaces:
Sleeping
Sleeping
File size: 16,221 Bytes
b34f0d5 7dcc8af 9bab38e 2c72380 b34f0d5 f9b088b 8144da3 7dcc8af b34f0d5 8144da3 c65ce97 f1d1009 7dcc8af f1d1009 c65ce97 7dcc8af b34f0d5 f1d1009 c753d25 b34f0d5 c753d25 7dcc8af f1d1009 7dcc8af c753d25 b34f0d5 c753d25 b34f0d5 7dcc8af c753d25 a793169 c753d25 7dcc8af c753d25 092cc1c c753d25 092cc1c f1d1009 092cc1c c753d25 092cc1c c753d25 092cc1c c753d25 092cc1c c753d25 9bab38e f1d1009 c753d25 f1d1009 c753d25 9bab38e c753d25 f1d1009 c753d25 9bab38e c753d25 9bab38e c753d25 9bab38e c753d25 b34f0d5 f1d1009 f9b088b b34f0d5 c753d25 f1d1009 0b12c58 f1d1009 e3e9a1c f1d1009 a793169 23d8e09 a793169 c753d25 e3e9a1c a793169 0b12c58 a793169 e3e9a1c 23d8e09 e3e9a1c c753d25 a793169 c753d25 a793169 c753d25 a793169 c753d25 a793169 23d8e09 a793169 0b12c58 e3e9a1c 7dcc8af e3e9a1c c753d25 a793169 c753d25 a793169 c753d25 a793169 c753d25 a793169 a52cf12 a793169 0b12c58 e3e9a1c 9bab38e e3e9a1c c753d25 a793169 c753d25 a793169 c753d25 a793169 c753d25 6d1479a f9b088b 2c72380 f9b088b 2c72380 a793169 a52cf12 f9b088b a793169 0b12c58 e3e9a1c 2c72380 e3e9a1c f9b088b a793169 f9b088b a793169 f9b088b a793169 f9b088b b34f0d5 23d8e09 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 |
import gradio as gr
from huggingface_hub import InferenceClient
import openai
import anthropic
from typing import Optional
#############################
# [기본코드] - 수정/삭제 불가
#############################
# 제거할 모델들을 MODELS 사전에서 제외
MODELS = {
"Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
"Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
"Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
"Microsoft": "microsoft/Phi-3-mini-4k-instruct",
"Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
"Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
"Aya-23-35B": "CohereForAI/aya-23-35B"
}
# Cohere Command R+ 모델 ID 정의
COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024"
def get_client(model_name, hf_token):
"""
모델 이름에 맞춰 InferenceClient 생성.
hf_token을 UI에서 입력받은 값으로 사용하도록 변경.
"""
if not hf_token:
raise ValueError("HuggingFace API 토큰이 필요합니다.")
if model_name in MODELS:
model_id = MODELS[model_name]
elif model_name == "Cohere Command R+":
model_id = COHERE_MODEL
else:
raise ValueError("유효하지 않은 모델 이름입니다.")
return InferenceClient(model_id, token=hf_token)
def respond_hf_qna(
question: str,
model_name: str,
max_tokens: int,
temperature: float,
top_p: float,
system_message: str,
hf_token: str
):
"""
HuggingFace 모델(Zephyr 등)에 대해 한 번의 질문(question)에 대한 답변을 반환하는 함수.
"""
try:
client = get_client(model_name, hf_token)
except ValueError as e:
return f"오류: {str(e)}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": question}
]
try:
response = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
stream=False,
)
assistant_message = response.choices[0].message.content
return assistant_message
except Exception as e:
return f"오류가 발생했습니다: {str(e)}"
def respond_cohere_qna(
question: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
hf_token: str
):
"""
Cohere Command R+ 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수.
"""
model_name = "Cohere Command R+"
try:
client = get_client(model_name, hf_token)
except ValueError as e:
return f"오류: {str(e)}"
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": question}
]
try:
response_full = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response_full.choices[0].message.content
return assistant_message
except Exception as e:
return f"오류가 발생했습니다: {str(e)}"
def respond_chatgpt_qna(
question: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
openai_token: str
):
"""
ChatGPT(OpenAI) 모델을 이용해 한 번의 질문(question)에 대한 답변을 반환하는 함수.
"""
if not openai_token:
return "OpenAI API 토큰이 필요합니다."
openai.api_key = openai_token
messages = [
{"role": "system", "content": system_message},
{"role": "user", "content": question}
]
try:
response = openai.ChatCompletion.create(
model="gpt-4o-mini", # 필요한 경우 변경
messages=messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
assistant_message = response.choices[0].message['content']
return assistant_message
except Exception as e:
return f"오류가 발생했습니다: {str(e)}"
#############################
# [기본코드] UI 부분 - 수정/삭제 불가
#############################
with gr.Blocks() as demo:
gr.Markdown("# Prompting AI - 일반 문답형 데모")
gr.Markdown("언어모델별 문답형 테스트 데모입니다. 한 번에 한 질문씩만 주고받습니다.")
# 한 줄에 세 토큰 텍스트박스 배치
with gr.Row():
hf_token_box = gr.Textbox(
label="HuggingFace 토큰 (비공개)",
type="password",
placeholder="HuggingFace API 토큰을 입력하세요..."
)
openai_token_box = gr.Textbox(
label="OpenAI 토큰 (비공개)",
type="password",
placeholder="OpenAI API 토큰을 입력하세요..."
)
claude_token_box = gr.Textbox(
label="Claude 토큰 (비공개)",
type="password",
placeholder="Claude API 토큰을 입력하세요...",
show_copy_button=False
)
#################
# 일반 모델 탭
#################
with gr.Tab("일반 모델"):
# 모델명 선택
model_name = gr.Radio(
choices=list(MODELS.keys()),
label="Language Model (HuggingFace)",
value="Zephyr 7B Beta"
)
# 입력1~5 (한 줄)
with gr.Row():
input1 = gr.Textbox(label="입력1", lines=1)
input2 = gr.Textbox(label="입력2", lines=1)
input3 = gr.Textbox(label="입력3", lines=1)
input4 = gr.Textbox(label="입력4", lines=1)
input5 = gr.Textbox(label="입력5", lines=1)
# 답변
answer_output = gr.Textbox(label="답변", lines=5, interactive=False)
# 고급 설정을 답변 아래에
with gr.Accordion("고급 설정 (일반 모델)", open=False):
max_tokens = gr.Slider(minimum=0, maximum=2000, value=500, step=100, label="Max Tokens")
temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
submit_button = gr.Button("전송")
# 다섯 입력칸을 합쳐서 question으로 만든 뒤 응답
def merge_and_call_hf(i1, i2, i3, i4, i5, m_name, mt, temp, top_p_, sys_msg, hf_token):
question = " ".join([i1, i2, i3, i4, i5])
return respond_hf_qna(
question=question,
model_name=m_name,
max_tokens=mt,
temperature=temp,
top_p=top_p_,
system_message=sys_msg,
hf_token=hf_token
)
submit_button.click(
fn=merge_and_call_hf,
inputs=[
input1, input2, input3, input4, input5, # 입력1~5
model_name,
max_tokens,
temperature,
top_p,
system_message,
hf_token_box
],
outputs=answer_output
)
#################
# Cohere Command R+ 탭
#################
with gr.Tab("Cohere Command R+"):
# 입력1~5 (한 줄)
with gr.Row():
cohere_input1 = gr.Textbox(label="입력1", lines=1)
cohere_input2 = gr.Textbox(label="입력2", lines=1)
cohere_input3 = gr.Textbox(label="입력3", lines=1)
cohere_input4 = gr.Textbox(label="입력4", lines=1)
cohere_input5 = gr.Textbox(label="입력5", lines=1)
# 답변
cohere_answer_output = gr.Textbox(label="답변", lines=5, interactive=False)
with gr.Accordion("고급 설정 (Cohere)", open=False):
cohere_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
cohere_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max Tokens")
cohere_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
cohere_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
cohere_submit_button = gr.Button("전송")
def merge_and_call_cohere(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, hf_token):
question = " ".join([i1, i2, i3, i4, i5])
return respond_cohere_qna(
question=question,
system_message=sys_msg,
max_tokens=mt,
temperature=temp,
top_p=top_p_,
hf_token=hf_token
)
cohere_submit_button.click(
fn=merge_and_call_cohere,
inputs=[
cohere_input1, cohere_input2, cohere_input3, cohere_input4, cohere_input5,
cohere_system_message,
cohere_max_tokens,
cohere_temperature,
cohere_top_p,
hf_token_box
],
outputs=cohere_answer_output
)
#################
# ChatGPT 탭
#################
with gr.Tab("gpt-4o-mini"):
# 입력1~5 (한 줄)
with gr.Row():
chatgpt_input1 = gr.Textbox(label="입력1", lines=1)
chatgpt_input2 = gr.Textbox(label="입력2", lines=1)
chatgpt_input3 = gr.Textbox(label="입력3", lines=1)
chatgpt_input4 = gr.Textbox(label="입력4", lines=1)
chatgpt_input5 = gr.Textbox(label="입력5", lines=1)
# 답변
chatgpt_answer_output = gr.Textbox(label="답변", lines=5, interactive=False)
with gr.Accordion("고급 설정 (ChatGPT)", open=False):
chatgpt_system_message = gr.Textbox(
value="""반드시 한글로 답변할 것.
너는 ChatGPT, OpenAI에서 개발한 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
label="System Message",
lines=3
)
chatgpt_max_tokens = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max Tokens")
chatgpt_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
chatgpt_top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
chatgpt_submit_button = gr.Button("전송")
def merge_and_call_chatgpt(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, openai_token):
question = " ".join([i1, i2, i3, i4, i5])
return respond_chatgpt_qna(
question=question,
system_message=sys_msg,
max_tokens=mt,
temperature=temp,
top_p=top_p_,
openai_token=openai_token
)
chatgpt_submit_button.click(
fn=merge_and_call_chatgpt,
inputs=[
chatgpt_input1, chatgpt_input2, chatgpt_input3, chatgpt_input4, chatgpt_input5,
chatgpt_system_message,
chatgpt_max_tokens,
chatgpt_temperature,
chatgpt_top_p,
openai_token_box
],
outputs=chatgpt_answer_output
)
#################################################
# [클로드 플레이그라운드] - 개선된 코드
#################################################
def validate_claude_token(token: str) -> bool:
"""Claude API 토큰 검증"""
return bool(token and len(token.strip()) >= 10)
def respond_claude_qna(
question: str,
system_message: str,
max_tokens: int,
temperature: float,
top_p: float,
claude_api_key: str
) -> str:
"""
Claude API를 사용한 개선된 응답 생성 함수
"""
if not validate_claude_token(claude_api_key):
return "유효한 Claude API 토큰이 필요합니다."
try:
client = anthropic.Anthropic(api_key=claude_api_key)
# 메시지 생성
message = client.messages.create(
model="claude-3-haiku-20240307",
max_tokens=max_tokens,
temperature=temperature,
system=system_message,
messages=[
{
"role": "user",
"content": question
}
]
)
return message.content[0].text
except anthropic.APIError as ae:
return f"Claude API 오류: {str(ae)}"
except anthropic.RateLimitError:
return "요청 한도를 초과했습니다. 잠시 후 다시 시도해주세요."
except Exception as e:
return f"예상치 못한 오류가 발생했습니다: {str(e)}"
#################
# Claude 탭
#################
with gr.Tab("claude-3-haiku"):
gr.Markdown("claude-3-haiku모델")
# 입력1~5 (한 줄)
with gr.Row():
claude_input1 = gr.Textbox(label="입력1", lines=1)
claude_input2 = gr.Textbox(label="입력2", lines=1)
claude_input3 = gr.Textbox(label="입력3", lines=1)
claude_input4 = gr.Textbox(label="입력4", lines=1)
claude_input5 = gr.Textbox(label="입력5", lines=1)
# 답변
claude_answer_output = gr.Textbox(label="답변", interactive=False, lines=5)
with gr.Accordion("고급 설정 (Claude)", open=False):
claude_system_message = gr.Textbox(
label="System Message",
value="""반드시 한글로 답변할 것.
너는 Anthropic에서 개발한 클로드이다.
최대한 정확하고 친절하게 답변하라.""",
lines=3
)
claude_max_tokens = gr.Slider(
minimum=1,
maximum=4096,
value=512,
step=1,
label="Max Tokens"
)
claude_temperature = gr.Slider(
minimum=0.1,
maximum=2.0,
value=0.7,
step=0.05,
label="Temperature"
)
claude_top_p = gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p"
)
claude_submit_button = gr.Button("전송")
def merge_and_call_claude(i1, i2, i3, i4, i5, sys_msg, mt, temp, top_p_, claude_key):
question = " ".join([i1, i2, i3, i4, i5])
return respond_claude_qna(
question=question,
system_message=sys_msg,
max_tokens=mt,
temperature=temp,
top_p=top_p_,
claude_api_key=claude_key
)
claude_submit_button.click(
fn=merge_and_call_claude,
inputs=[
claude_input1, claude_input2, claude_input3, claude_input4, claude_input5,
claude_system_message,
claude_max_tokens,
claude_temperature,
claude_top_p,
claude_token_box
],
outputs=claude_answer_output
)
#############################
# 메인 실행부
#############################
if __name__ == "__main__":
demo.launch()
|