File size: 10,593 Bytes
b34f0d5
7dcc8af
9bab38e
7dcc8af
b34f0d5
c65ce97
7dcc8af
 
 
 
 
 
 
 
 
b34f0d5
c65ce97
 
 
7dcc8af
 
 
23d8e09
c65ce97
 
 
 
 
 
7dcc8af
b34f0d5
7dcc8af
 
 
 
 
b34f0d5
7dcc8af
 
b34f0d5
7dcc8af
 
 
 
 
b34f0d5
7dcc8af
 
 
 
 
b34f0d5
7dcc8af
c65ce97
 
7dcc8af
 
 
 
 
 
 
 
c65ce97
7dcc8af
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
23d8e09
7dcc8af
 
 
092cc1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9bab38e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcc8af
 
b34f0d5
 
7dcc8af
 
23d8e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcc8af
 
 
 
 
 
b34f0d5
23d8e09
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
092cc1c
 
23d8e09
 
 
092cc1c
 
23d8e09
 
 
9bab38e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7dcc8af
b34f0d5
23d8e09
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
import gradio as gr
from huggingface_hub import InferenceClient
import openai
import os

# 제거할 모델들을 MODELS 사전에서 제외
MODELS = {
    "Zephyr 7B Beta": "HuggingFaceH4/zephyr-7b-beta",
    "Meta Llama 3.1 8B": "meta-llama/Meta-Llama-3.1-8B-Instruct",
    "Meta-Llama 3.1 70B-Instruct": "meta-llama/Meta-Llama-3.1-70B-Instruct",
    "Microsoft": "microsoft/Phi-3-mini-4k-instruct",
    "Mixtral 8x7B": "mistralai/Mistral-7B-Instruct-v0.3",
    "Mixtral Nous-Hermes": "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
    "Aya-23-35B": "CohereForAI/aya-23-35B"
}

# Cohere Command R+ 모델 ID 정의
COHERE_MODEL = "CohereForAI/c4ai-command-r-plus-08-2024"

def get_client(model_name):
    hf_token = os.getenv("HF_TOKEN")
    if not hf_token:
        raise ValueError("HF_TOKEN 환경 변수가 필요합니다.")
    if model_name in MODELS:
        model_id = MODELS[model_name]
    elif model_name == "Cohere Command R+":
        model_id = COHERE_MODEL
    else:
        raise ValueError("유효하지 않은 모델 이름입니다.")
    return InferenceClient(model_id, token=hf_token)

def respond(
    message,
    chat_history,
    model_name,
    max_tokens,
    temperature,
    top_p,
    system_message,
):
    try:
        client = get_client(model_name)
    except ValueError as e:
        chat_history.append((message, str(e)))
        return chat_history

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})

    try:
        if model_name == "Cohere Command R+":
            # Cohere Command R+ 모델을 위한 비스트리밍 처리
            response = client.chat_completion(
                messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p,
            )
            assistant_message = response.choices[0].message.content
            chat_history.append((message, assistant_message))
            return chat_history
        else:
            # 다른 모델들을 위한 스트리밍 처리
            stream = client.chat_completion(
                messages,
                max_tokens=max_tokens,
                temperature=temperature,
                top_p=top_p,
                stream=True,
            )
            partial_message = ""
            for response in stream:
                if response.choices[0].delta.content is not None:
                    partial_message += response.choices[0].delta.content
                    if len(chat_history) > 0 and chat_history[-1][0] == message:
                        chat_history[-1] = (message, partial_message)
                    else:
                        chat_history.append((message, partial_message))
                    yield chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        yield chat_history

def cohere_respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    model_name = "Cohere Command R+"
    try:
        client = get_client(model_name)
    except ValueError as e:
        chat_history.append((message, str(e)))
        return chat_history

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        if human:
            messages.append({"role": "user", "content": human})
        if assistant:
            messages.append({"role": "assistant", "content": assistant})

    messages.append({"role": "user", "content": message})

    response = ""
    
    try:
        # Cohere Command R+ 모델을 위한 비스트리밍 처리
        response_full = client.chat_completion(
            messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
        assistant_message = response_full.choices[0].message.content
        chat_history.append((message, assistant_message))
        return chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        return chat_history

def chatgpt_respond(
    message,
    chat_history,
    system_message,
    max_tokens,
    temperature,
    top_p,
):
    openai.api_key = os.getenv("OPENAI_API_KEY")
    if not openai.api_key:
        chat_history.append((message, "OPENAI_API_KEY 환경 변수가 필요합니다."))
        return chat_history

    messages = [{"role": "system", "content": system_message}]
    for human, assistant in chat_history:
        messages.append({"role": "user", "content": human})
        messages.append({"role": "assistant", "content": assistant})
    messages.append({"role": "user", "content": message})

    try:
        response = openai.ChatCompletion.create(
            model="gpt-4o-mini",  # 또는 다른 모델 ID 사용
            messages=messages,
            max_tokens=max_tokens,
            temperature=temperature,
            top_p=top_p,
        )
        assistant_message = response.choices[0].message['content']
        chat_history.append((message, assistant_message))
        return chat_history
    except Exception as e:
        error_message = f"오류가 발생했습니다: {str(e)}"
        chat_history.append((message, error_message))
        return chat_history

def clear_conversation():
    return []

with gr.Blocks() as demo:
    gr.Markdown("# Prompting AI Chatbot")
    gr.Markdown("언어모델별 프롬프트 테스트 챗봇입니다.")
    
    with gr.Tab("일반 모델"):
        with gr.Row():
            with gr.Column(scale=1):
                model_name = gr.Radio(
                    choices=list(MODELS.keys()),
                    label="Language Model",
                    value="Zephyr 7B Beta"
                )
                max_tokens = gr.Slider(minimum=0, maximum=2000, value=500, step=100, label="Max Tokens")
                temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
                top_p = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p")
                system_message = gr.Textbox(
                    value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
                    label="System Message",
                    lines=3
                )
    
            with gr.Column(scale=2):
                chatbot = gr.Chatbot()
                msg = gr.Textbox(label="메세지를 입력하세요")
                with gr.Row():
                    submit_button = gr.Button("전송")
                    clear_button = gr.Button("대화 내역 지우기")
    
        msg.submit(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
        submit_button.click(respond, [msg, chatbot, model_name, max_tokens, temperature, top_p, system_message], chatbot)
        clear_button.click(clear_conversation, outputs=chatbot, queue=False)
    
    with gr.Tab("Cohere Command R+"):
        with gr.Row():
            cohere_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 최고의 비서이다.
내가 요구하는것들을 최대한 자세하고 정확하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            cohere_max_tokens = gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens")
            cohere_temperature = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
            cohere_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        cohere_chatbot = gr.Chatbot(height=600)
        cohere_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            cohere_submit_button = gr.Button("전송")
            cohere_clear_button = gr.Button("대화 내역 지우기")
        
        cohere_msg.submit(
            cohere_respond,
            [cohere_msg, cohere_chatbot, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p],
            cohere_chatbot
        )
        cohere_submit_button.click(
            cohere_respond,
            [cohere_msg, cohere_chatbot, cohere_system_message, cohere_max_tokens, cohere_temperature, cohere_top_p],
            cohere_chatbot
        )
        cohere_clear_button.click(clear_conversation, outputs=cohere_chatbot, queue=False)
    
    with gr.Tab("ChatGPT"):
        with gr.Row():
            chatgpt_system_message = gr.Textbox(
                value="""반드시 한글로 답변할 것.
너는 ChatGPT, OpenAI에서 개발한 언어 모델이다.
내가 요구하는 것을 최대한 자세하고 정확하게 답변하라.
""",
                label="System Message",
                lines=3
            )
            chatgpt_max_tokens = gr.Slider(minimum=1, maximum=4096, value=1024, step=1, label="Max Tokens")
            chatgpt_temperature = gr.Slider(minimum=0.1, maximum=2.0, value=0.7, step=0.05, label="Temperature")
            chatgpt_top_p = gr.Slider(
                minimum=0.1,
                maximum=1.0,
                value=0.95,
                step=0.05,
                label="Top-P",
            )
        
        chatgpt_chatbot = gr.Chatbot(height=600)
        chatgpt_msg = gr.Textbox(label="메세지를 입력하세요")
        with gr.Row():
            chatgpt_submit_button = gr.Button("전송")
            chatgpt_clear_button = gr.Button("대화 내역 지우기")
        
        chatgpt_msg.submit(
            chatgpt_respond,
            [chatgpt_msg, chatgpt_chatbot, chatgpt_system_message, chatgpt_max_tokens, chatgpt_temperature, chatgpt_top_p],
            chatgpt_chatbot
        )
        chatgpt_submit_button.click(
            chatgpt_respond,
            [chatgpt_msg, chatgpt_chatbot, chatgpt_system_message, chatgpt_max_tokens, chatgpt_temperature, chatgpt_top_p],
            chatgpt_chatbot
        )
        chatgpt_clear_button.click(clear_conversation, outputs=chatgpt_chatbot, queue=False)

if __name__ == "__main__":
    demo.launch()