Kims12 commited on
Commit
a505bd1
·
verified ·
1 Parent(s): e1b0c4f

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +72 -2
app.py CHANGED
@@ -1,2 +1,72 @@
1
- import os
2
- exec(os.environ.get('APP’))
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import gradio as gr
2
+ from gradio_imageslider import ImageSlider
3
+ from loadimg import load_img
4
+ import spaces
5
+ from transformers import AutoModelForImageSegmentation
6
+ import torch
7
+ from torchvision import transforms
8
+
9
+ torch.set_float32_matmul_precision("high")
10
+
11
+ birefnet = AutoModelForImageSegmentation.from_pretrained(
12
+ "ZhengPeng7/BiRefNet", trust_remote_code=True
13
+ )
14
+ birefnet.to("cuda")
15
+
16
+ transform_image = transforms.Compose(
17
+ [
18
+ transforms.Resize((1024, 1024)),
19
+ transforms.ToTensor(),
20
+ transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
21
+ ]
22
+ )
23
+
24
+ def fn(image):
25
+ im = load_img(image, output_type="pil")
26
+ im = im.convert("RGB")
27
+ origin = im.copy()
28
+ processed_image = process(im)
29
+ return (processed_image, origin)
30
+
31
+ @spaces.GPU
32
+ def process(image):
33
+ image_size = image.size
34
+ input_images = transform_image(image).unsqueeze(0).to("cuda")
35
+ # Prediction
36
+ with torch.no_grad():
37
+ preds = birefnet(input_images)[-1].sigmoid().cpu()
38
+ pred = preds[0].squeeze()
39
+ pred_pil = transforms.ToPILImage()(pred)
40
+ mask = pred_pil.resize(image_size)
41
+ image.putalpha(mask)
42
+ return image
43
+
44
+ def process_file(f):
45
+ name_path = f.rsplit(".", 1)[0] + ".png"
46
+ im = load_img(f, output_type="pil")
47
+ im = im.convert("RGB")
48
+ transparent = process(im)
49
+ transparent.save(name_path)
50
+ return name_path
51
+
52
+ slider1 = ImageSlider(label="Processed Image", type="pil")
53
+ slider2 = ImageSlider(label="Processed Image from URL", type="pil")
54
+ image_upload = gr.Image(label="Upload an image")
55
+ image_file_upload = gr.Image(label="Upload an image", type="filepath")
56
+ url_input = gr.Textbox(label="Paste an image URL")
57
+ output_file = gr.File(label="Output PNG File")
58
+
59
+ # Example images
60
+ chameleon = load_img("butterfly.jpg", output_type="pil")
61
+ url_example = "https://hips.hearstapps.com/hmg-prod/images/gettyimages-1229892983-square.jpg"
62
+
63
+ tab1 = gr.Interface(fn, inputs=image_upload, outputs=slider1, examples=[chameleon], api_name="image")
64
+ tab2 = gr.Interface(fn, inputs=url_input, outputs=slider2, examples=[url_example], api_name="text")
65
+ tab3 = gr.Interface(process_file, inputs=image_file_upload, outputs=output_file, examples=["butterfly.jpg"], api_name="png")
66
+
67
+ demo = gr.TabbedInterface(
68
+ [tab1, tab2, tab3], ["Image Upload", "URL Input", "File Output"], title="Background Removal Tool"
69
+ )
70
+
71
+ if __name__ == "__main__":
72
+ demo.launch(show_error=True)