ChaBotRAG / rag.py
{user_name}
rag ์ฝ”๋“œ ๋น„ํ™œ์„ฑํ™”
8abf10e
raw
history blame
1.64 kB
# ################
# # PDF ํŒŒ์ผ์„ ๋กœ๋“œํ•˜๊ณ  ๋ฌธ์„œ๋ฅผ ์ชผ๊ฐœ์„œ ๋ฌธ์„œ๋ฒกํ„ฐํ™” ํ•œ ํ›„ ์งˆ์˜ํ•˜๊ธฐ
# ################
# import tiktoken
# tokenizer = tiktoken.get_encoding('cl100k_base')
# def tiktoken_len(text):
# tokens = tokenizer.encode(text)
# return len(tokens)
# from langchain.embeddings.sentence_transformer import SentenceTransformerEmbeddings
# from langchain.text_splitter import RecursiveCharacterTextSplitter
# from langchain.vectorstores import Chroma
# from langchain.document_loaders import PyPDFLoader
# from langchain.embeddings import HuggingFaceEmbeddings
# ## pdf ํŒŒ์ผ๋กœ๋“œ ํ•˜๊ณ  ์ชผ๊ฐœ๊ธฐ
# loader = PyPDFLoader('gsat_170823.pdf')
# pages = loader.load_and_split()
# ## chunk๋กœ ์ชผ๊ฐœ๊ธฐ
# text_splitter = RecursiveCharacterTextSplitter(chunk_size=500, chunk_overlap=80,length_function=tiktoken_len)
# sourceDocs = text_splitter.split_documents(pages)
# ################
# # HuggingFace ๋ชจ๋ธ๋กœ ๋ฌธ์„œ๋ฒกํ„ฐํ™” ํ›„ ์œ ์‚ฌ๋„ ํƒ์ƒ‰
# ################
# from langchain.embeddings import HuggingFaceEmbeddings
# model_huggingface = HuggingFaceEmbeddings(model_name = 'jhgan/ko-sroberta-multitask',
# model_kwargs = {'device':'cpu'},
# encode_kwargs = {'normalize_embeddings' : True})
# ## Chroma ๊ธฐ๋ฐ˜ pdf(docs ๋ฒกํ„ฐํ™”)
# db = Chroma.from_documents(sourceDocs, model_huggingface)
# ## ์งˆ์˜ํ•˜๊ธฐ
# def SearchDocs(question, k=1):
# results = db.similarity_search_with_relevance_scores(question, k = k)
# merged = ' '.join([sourceDocs[result[0]][0] for result in results])
# return merged