Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -3,33 +3,35 @@ import base64
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
|
|
6 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
7 |
|
8 |
processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14-finetuned")
|
9 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14-finetuned")
|
10 |
|
11 |
-
def input_image_setup(
|
12 |
"""
|
13 |
Encodes the uploaded image file into a base64 string.
|
14 |
|
15 |
Parameters:
|
16 |
-
-
|
17 |
|
18 |
Returns:
|
19 |
-
- encoded_image (str): Base64 encoded string of the image data
|
20 |
"""
|
21 |
-
if
|
22 |
-
# Convert the
|
23 |
-
|
24 |
-
|
|
|
|
|
25 |
return encoded_image
|
26 |
else:
|
27 |
raise FileNotFoundError("No file uploaded")
|
28 |
|
29 |
def format_response(response_text):
|
30 |
"""
|
31 |
-
Formats the model response to display each item
|
32 |
-
Converts numbered items into HTML `<ul>` and `<li>` format.
|
33 |
"""
|
34 |
response_text = re.sub(r"\*\*(.*?)\*\*", r"<p><strong>\1</strong></p>", response_text)
|
35 |
response_text = re.sub(r"(?m)^\s*\*\s(.*)", r"<li>\1</li>", response_text)
|
@@ -38,83 +40,56 @@ def format_response(response_text):
|
|
38 |
response_text = re.sub(r"(\n|\\n)+", r"<br>", response_text)
|
39 |
return response_text
|
40 |
|
41 |
-
def generate_model_response(
|
42 |
"""
|
43 |
Processes the uploaded image and user query to generate a response from the model.
|
44 |
|
45 |
Parameters:
|
46 |
-
-
|
47 |
- user_query: The user's question about the image.
|
48 |
|
49 |
Returns:
|
50 |
-
- str: The generated response from the model.
|
51 |
"""
|
52 |
-
|
53 |
-
|
54 |
-
|
|
|
55 |
|
56 |
-
# Define the assistant prompt
|
57 |
assistant_prompt = """
|
58 |
-
You are an expert nutritionist.
|
59 |
-
|
60 |
-
1. **Identification**: List each identified food item clearly, one per line.
|
61 |
-
2. **Portion Size & Calorie Estimation**: For each identified food item, specify the portion size and provide an estimated number of calories. Use bullet points with the following structure:
|
62 |
-
- **[Food Item]**: [Portion Size], [Number of Calories] calories
|
63 |
-
|
64 |
-
Example:
|
65 |
-
* **Salmon**: 6 ounces, 210 calories
|
66 |
-
* **Asparagus**: 3 spears, 25 calories
|
67 |
-
|
68 |
-
3. **Total Calories**: Provide the total number of calories for all food items.
|
69 |
-
|
70 |
-
Example:
|
71 |
-
Total Calories: [Number of Calories]
|
72 |
-
|
73 |
-
4. **Nutrient Breakdown**: Include a breakdown of key nutrients such as **Protein**, **Carbohydrates**, **Fats**, **Vitamins**, and **Minerals**. Use bullet points, and for each nutrient provide details about the contribution of each food item.
|
74 |
|
75 |
-
|
76 |
-
|
|
|
|
|
|
|
|
|
77 |
|
78 |
-
|
79 |
-
|
80 |
-
6. **Disclaimer**: Include the following exact text as a disclaimer:
|
81 |
-
|
82 |
-
The nutritional information and calorie estimates provided are approximate and are based on general food data.
|
83 |
-
Actual values may vary depending on factors such as portion size, specific ingredients, preparation methods, and individual variations.
|
84 |
-
For precise dietary advice or medical guidance, consult a qualified nutritionist or healthcare provider.
|
85 |
-
|
86 |
-
Format your response exactly like the template above to ensure consistency.
|
87 |
"""
|
88 |
|
89 |
-
# Prepare input for the model
|
90 |
input_text = assistant_prompt + "\n\n" + user_query + "\n"
|
91 |
-
|
92 |
-
# Tokenize input text
|
93 |
inputs = tokenizer(input_text, return_tensors="pt")
|
94 |
-
|
95 |
try:
|
96 |
-
# Generate response from the model
|
97 |
outputs = model.generate(**inputs)
|
98 |
-
|
99 |
-
# Decode and format the model's raw response
|
100 |
raw_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
101 |
formatted_response = format_response(raw_response)
|
102 |
-
|
103 |
return formatted_response
|
104 |
-
|
105 |
except Exception as e:
|
106 |
print(f"Error in generating response: {e}")
|
107 |
-
return "An error occurred
|
108 |
|
109 |
-
#
|
110 |
iface = gr.Interface(
|
111 |
fn=generate_model_response,
|
112 |
inputs=[
|
113 |
-
gr.Image(type="pil", label="Upload Image"),
|
114 |
-
gr.Textbox(label="
|
115 |
],
|
116 |
-
outputs="
|
117 |
)
|
118 |
|
119 |
-
|
120 |
-
iface.launch()
|
|
|
3 |
from transformers import AutoModelForCausalLM, AutoTokenizer
|
4 |
import gradio as gr
|
5 |
from PIL import Image
|
6 |
+
import io
|
7 |
from transformers import Owlv2Processor, Owlv2ForObjectDetection
|
8 |
|
9 |
processor = Owlv2Processor.from_pretrained("google/owlv2-large-patch14-finetuned")
|
10 |
model = Owlv2ForObjectDetection.from_pretrained("google/owlv2-large-patch14-finetuned")
|
11 |
|
12 |
+
def input_image_setup(image_file):
|
13 |
"""
|
14 |
Encodes the uploaded image file into a base64 string.
|
15 |
|
16 |
Parameters:
|
17 |
+
- image_file: Image file uploaded via Gradio
|
18 |
|
19 |
Returns:
|
20 |
+
- encoded_image (str): Base64 encoded string of the image data
|
21 |
"""
|
22 |
+
if image_file is not None:
|
23 |
+
# Convert the PIL Image object to bytes and encode in Base64
|
24 |
+
buffered = io.BytesIO()
|
25 |
+
image_file.save(buffered, format="JPEG")
|
26 |
+
img_bytes = buffered.getvalue()
|
27 |
+
encoded_image = base64.b64encode(img_bytes).decode("utf-8")
|
28 |
return encoded_image
|
29 |
else:
|
30 |
raise FileNotFoundError("No file uploaded")
|
31 |
|
32 |
def format_response(response_text):
|
33 |
"""
|
34 |
+
Formats the model response to display each item as HTML elements.
|
|
|
35 |
"""
|
36 |
response_text = re.sub(r"\*\*(.*?)\*\*", r"<p><strong>\1</strong></p>", response_text)
|
37 |
response_text = re.sub(r"(?m)^\s*\*\s(.*)", r"<li>\1</li>", response_text)
|
|
|
40 |
response_text = re.sub(r"(\n|\\n)+", r"<br>", response_text)
|
41 |
return response_text
|
42 |
|
43 |
+
def generate_model_response(image_file, user_query):
|
44 |
"""
|
45 |
Processes the uploaded image and user query to generate a response from the model.
|
46 |
|
47 |
Parameters:
|
48 |
+
- image_file: The uploaded image file.
|
49 |
- user_query: The user's question about the image.
|
50 |
|
51 |
Returns:
|
52 |
+
- str: The generated response from the model, formatted as HTML.
|
53 |
"""
|
54 |
+
try:
|
55 |
+
encoded_image = input_image_setup(image_file)
|
56 |
+
except FileNotFoundError as e:
|
57 |
+
return f"<p>{str(e)}</p>"
|
58 |
|
|
|
59 |
assistant_prompt = """
|
60 |
+
You are an expert nutritionist. Analyze the food items in the image and provide a detailed nutritional assessment:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
61 |
|
62 |
+
1. **Identification**: List each food item.
|
63 |
+
2. **Portion & Calories**: Specify portion size and calories for each item.
|
64 |
+
3. **Total Calories**: Provide the total.
|
65 |
+
4. **Nutrient Breakdown**: Detail key nutrients.
|
66 |
+
5. **Health Evaluation**: Evaluate meal healthiness.
|
67 |
+
6. **Disclaimer**: "Nutritional info is approximate. Consult a nutritionist for precise advice."
|
68 |
|
69 |
+
Format your response accordingly.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
70 |
"""
|
71 |
|
|
|
72 |
input_text = assistant_prompt + "\n\n" + user_query + "\n"
|
73 |
+
|
|
|
74 |
inputs = tokenizer(input_text, return_tensors="pt")
|
75 |
+
|
76 |
try:
|
|
|
77 |
outputs = model.generate(**inputs)
|
|
|
|
|
78 |
raw_response = tokenizer.decode(outputs[0], skip_special_tokens=True)
|
79 |
formatted_response = format_response(raw_response)
|
|
|
80 |
return formatted_response
|
|
|
81 |
except Exception as e:
|
82 |
print(f"Error in generating response: {e}")
|
83 |
+
return f"<p>An error occurred: {str(e)}</p>"
|
84 |
|
85 |
+
# Gradio Interface
|
86 |
iface = gr.Interface(
|
87 |
fn=generate_model_response,
|
88 |
inputs=[
|
89 |
+
gr.Image(type="pil", label="Upload Image"),
|
90 |
+
gr.Textbox(label="Enter your question", placeholder="How many calories are in this food?")
|
91 |
],
|
92 |
+
outputs=gr.HTML(label="Nutritional Assessment")
|
93 |
)
|
94 |
|
95 |
+
iface.launch(true)
|
|