Spaces:
Running
Running
import gradio as gr | |
from transformers import pipeline | |
# Load the summarization model | |
pipe = pipeline("summarization", model="Falconsai/text_summarization") | |
# Define the function to summarize text | |
def summarize_text(text): | |
if not text.strip(): | |
return "Please enter some text to summarize." | |
summary = pipe(text, max_length=150, min_length=30, do_sample=False) | |
return summary[0]['summary_text'] | |
# Create Gradio interface | |
iface = gr.Interface( | |
fn=summarize_text, | |
inputs=gr.Textbox(lines=5, placeholder="Enter text to summarize..."), | |
outputs="text", | |
title="Text Summarization App", | |
description="Enter text, and the AI will generate a concise summary.", | |
) | |
# Launch the Gradio app | |
if __name__ == "__main__": | |
iface.launch() | |