Summary / app.py
KilaruKusuma's picture
Update app.py
773d3a5 verified
raw
history blame
764 Bytes
import gradio as gr
from transformers import pipeline
# Load the summarization model
pipe = pipeline("summarization", model="Falconsai/text_summarization")
# Define the function to summarize text
def summarize_text(text):
if not text.strip():
return "Please enter some text to summarize."
summary = pipe(text, max_length=150, min_length=30, do_sample=False)
return summary[0]['summary_text']
# Create Gradio interface
iface = gr.Interface(
fn=summarize_text,
inputs=gr.Textbox(lines=5, placeholder="Enter text to summarize..."),
outputs="text",
title="Text Summarization App",
description="Enter text, and the AI will generate a concise summary.",
)
# Launch the Gradio app
if __name__ == "__main__":
iface.launch()