Spaces:
Running
on
Zero
Running
on
Zero
Anurag Bhardwaj
commited on
Update app.py
Browse files
app.py
CHANGED
@@ -5,10 +5,12 @@ from diffusers import DiffusionPipeline
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
|
|
8 |
from torchvision import transforms
|
|
|
|
|
9 |
|
10 |
|
11 |
-
# Cache pipeline loading to improve performance
|
12 |
@lru_cache(maxsize=1)
|
13 |
def load_pipeline():
|
14 |
# Load base model
|
@@ -22,7 +24,7 @@ def load_pipeline():
|
|
22 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
23 |
pipe.load_lora_weights(lora_repo)
|
24 |
|
25 |
-
# Load safety checker
|
26 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
27 |
"CompVis/stable-diffusion-safety-checker"
|
28 |
)
|
@@ -30,9 +32,11 @@ def load_pipeline():
|
|
30 |
"openai/clip-vit-base-patch32"
|
31 |
)
|
32 |
|
33 |
-
# Optimizations
|
34 |
-
|
35 |
-
|
|
|
|
|
36 |
|
37 |
return pipe, safety_checker, feature_extractor
|
38 |
|
@@ -49,19 +53,19 @@ def generate_image(
|
|
49 |
):
|
50 |
try:
|
51 |
progress(0, desc="Initializing...")
|
52 |
-
|
|
|
53 |
|
54 |
-
# Auto-add trigger words
|
55 |
if "super realism" not in prompt.lower():
|
56 |
prompt = f"Super Realism, {prompt}"
|
57 |
|
58 |
-
#
|
59 |
-
def update_progress(step,
|
60 |
progress((step + 1) / steps, desc="Generating image...")
|
61 |
|
62 |
-
# Generate image
|
63 |
with torch.inference_mode():
|
64 |
-
|
65 |
prompt=prompt,
|
66 |
width=width,
|
67 |
height=height,
|
@@ -69,18 +73,21 @@ def generate_image(
|
|
69 |
num_inference_steps=steps,
|
70 |
generator=generator,
|
71 |
callback=update_progress
|
72 |
-
)
|
|
|
73 |
|
74 |
-
# Safety check
|
75 |
progress(1, desc="Safety checking...")
|
|
|
76 |
safety_input = feature_extractor(image, return_tensors="pt")
|
77 |
np_image = np.array(image)
|
78 |
-
|
|
|
|
|
79 |
images=[np_image],
|
80 |
clip_input=safety_input.pixel_values
|
81 |
)
|
82 |
|
83 |
-
if
|
84 |
return Image.new("RGB", (512, 512)), "NSFW content detected"
|
85 |
|
86 |
return image, "Generation successful"
|
@@ -88,18 +95,17 @@ def generate_image(
|
|
88 |
except Exception as e:
|
89 |
return Image.new("RGB", (512, 512)), f"Error: {str(e)}"
|
90 |
|
91 |
-
# Create Gradio interface with rate limiting
|
92 |
with gr.Blocks() as app:
|
93 |
gr.Markdown("# Flux Super Realism Generator")
|
94 |
|
95 |
with gr.Row():
|
96 |
with gr.Column():
|
97 |
-
|
98 |
-
|
99 |
-
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
submit = gr.Button("Generate")
|
104 |
|
105 |
with gr.Column():
|
@@ -108,13 +114,13 @@ with gr.Blocks() as app:
|
|
108 |
|
109 |
submit.click(
|
110 |
generate_image,
|
111 |
-
inputs=[
|
112 |
outputs=[output_image, status]
|
113 |
)
|
114 |
|
115 |
-
# Rate limiting
|
116 |
app.queue(concurrency_count=1, max_size=3).launch()
|
117 |
|
118 |
-
#
|
119 |
-
|
120 |
-
|
|
|
5 |
from diffusers.pipelines.stable_diffusion import StableDiffusionSafetyChecker
|
6 |
from functools import lru_cache
|
7 |
from PIL import Image
|
8 |
+
|
9 |
from torchvision import transforms
|
10 |
+
from transformers import CLIPFeatureExtractor # Added missing import
|
11 |
+
|
12 |
|
13 |
|
|
|
14 |
@lru_cache(maxsize=1)
|
15 |
def load_pipeline():
|
16 |
# Load base model
|
|
|
24 |
lora_repo = "strangerzonehf/Flux-Super-Realism-LoRA"
|
25 |
pipe.load_lora_weights(lora_repo)
|
26 |
|
27 |
+
# Load safety checker and feature extractor
|
28 |
safety_checker = StableDiffusionSafetyChecker.from_pretrained(
|
29 |
"CompVis/stable-diffusion-safety-checker"
|
30 |
)
|
|
|
32 |
"openai/clip-vit-base-patch32"
|
33 |
)
|
34 |
|
35 |
+
# Optimizations: enable memory efficient attention if using GPU
|
36 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
37 |
+
if device.type == "cuda":
|
38 |
+
pipe.enable_xformers_memory_efficient_attention()
|
39 |
+
pipe = pipe.to(device)
|
40 |
|
41 |
return pipe, safety_checker, feature_extractor
|
42 |
|
|
|
53 |
):
|
54 |
try:
|
55 |
progress(0, desc="Initializing...")
|
56 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
57 |
+
generator = torch.Generator(device=device).manual_seed(seed)
|
58 |
|
59 |
+
# Auto-add trigger words if not present
|
60 |
if "super realism" not in prompt.lower():
|
61 |
prompt = f"Super Realism, {prompt}"
|
62 |
|
63 |
+
# Define the callback function with the proper signature
|
64 |
+
def update_progress(step, timestep, latents):
|
65 |
progress((step + 1) / steps, desc="Generating image...")
|
66 |
|
|
|
67 |
with torch.inference_mode():
|
68 |
+
result = pipe(
|
69 |
prompt=prompt,
|
70 |
width=width,
|
71 |
height=height,
|
|
|
73 |
num_inference_steps=steps,
|
74 |
generator=generator,
|
75 |
callback=update_progress
|
76 |
+
)
|
77 |
+
image = result.images[0]
|
78 |
|
|
|
79 |
progress(1, desc="Safety checking...")
|
80 |
+
# Preprocess image for safety checking
|
81 |
safety_input = feature_extractor(image, return_tensors="pt")
|
82 |
np_image = np.array(image)
|
83 |
+
|
84 |
+
# Unpack safety checker results (the safety checker returns a tuple)
|
85 |
+
_, nsfw_detected = safety_checker(
|
86 |
images=[np_image],
|
87 |
clip_input=safety_input.pixel_values
|
88 |
)
|
89 |
|
90 |
+
if nsfw_detected[0]:
|
91 |
return Image.new("RGB", (512, 512)), "NSFW content detected"
|
92 |
|
93 |
return image, "Generation successful"
|
|
|
95 |
except Exception as e:
|
96 |
return Image.new("RGB", (512, 512)), f"Error: {str(e)}"
|
97 |
|
|
|
98 |
with gr.Blocks() as app:
|
99 |
gr.Markdown("# Flux Super Realism Generator")
|
100 |
|
101 |
with gr.Row():
|
102 |
with gr.Column():
|
103 |
+
prompt_input = gr.Textbox(label="Prompt", value="A portrait of a person")
|
104 |
+
seed_input = gr.Slider(0, 1000, value=42, label="Seed")
|
105 |
+
width_input = gr.Slider(512, 2048, value=1024, label="Width")
|
106 |
+
height_input = gr.Slider(512, 2048, value=1024, label="Height")
|
107 |
+
guidance_input = gr.Slider(1, 20, value=6, label="Guidance Scale")
|
108 |
+
steps_input = gr.Slider(10, 100, value=28, label="Steps")
|
109 |
submit = gr.Button("Generate")
|
110 |
|
111 |
with gr.Column():
|
|
|
114 |
|
115 |
submit.click(
|
116 |
generate_image,
|
117 |
+
inputs=[prompt_input, seed_input, width_input, height_input, guidance_input, steps_input],
|
118 |
outputs=[output_image, status]
|
119 |
)
|
120 |
|
121 |
+
# Rate limiting: 1 request at a time, with a max queue size of 3
|
122 |
app.queue(concurrency_count=1, max_size=3).launch()
|
123 |
|
124 |
+
# Uncomment the lines below for advanced multiple GPU support
|
125 |
+
pipe.enable_model_cpu_offload()
|
126 |
+
pipe.enable_sequential_cpu_offload()
|