Spaces:
Sleeping
Sleeping
Upload app.py
Browse files
app.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import pandas as pd
|
2 |
+
|
3 |
+
|
4 |
+
df = pd.read_csv('./Mental_Health_FAQ.csv')
|
5 |
+
|
6 |
+
context_data = []
|
7 |
+
for i in range(len(df)):
|
8 |
+
context = ""
|
9 |
+
for j in range(3):
|
10 |
+
context += df.columns[j]
|
11 |
+
context += ": "
|
12 |
+
context += df.iloc[i][j]
|
13 |
+
context += " "
|
14 |
+
context_data.append(context)
|
15 |
+
|
16 |
+
|
17 |
+
import os
|
18 |
+
|
19 |
+
# Get the secret key from the environment
|
20 |
+
groq_key = os.environ.get('new_chatAPI_key')
|
21 |
+
|
22 |
+
## LLM used for RAG
|
23 |
+
from langchain_groq import ChatGroq
|
24 |
+
|
25 |
+
llm = ChatGroq(model="llama-3.3-70b-versatile",api_key=groq_key)
|
26 |
+
|
27 |
+
## Embedding model!
|
28 |
+
from langchain_huggingface import HuggingFaceEmbeddings
|
29 |
+
embed_model = HuggingFaceEmbeddings(model_name="mixedbread-ai/mxbai-embed-large-v1")
|
30 |
+
|
31 |
+
# create vector store!
|
32 |
+
from langchain_chroma import Chroma
|
33 |
+
|
34 |
+
vectorstore = Chroma(
|
35 |
+
collection_name="medical_dataset_store",
|
36 |
+
embedding_function=embed_model,
|
37 |
+
)
|
38 |
+
|
39 |
+
# add data to vector nstore
|
40 |
+
vectorstore.add_texts(context_data)
|
41 |
+
|
42 |
+
retriever = vectorstore.as_retriever()
|
43 |
+
|
44 |
+
from langchain_core.prompts import PromptTemplate
|
45 |
+
|
46 |
+
template = ("""You are a mental health professional.
|
47 |
+
Use the provided context to answer the question.
|
48 |
+
If you don't know the answer, say so. Explain your answer in detail.
|
49 |
+
Do not discuss the context in your response; just provide the answer directly.
|
50 |
+
|
51 |
+
Context: {context}
|
52 |
+
|
53 |
+
Question: {question}
|
54 |
+
|
55 |
+
Answer:""")
|
56 |
+
|
57 |
+
rag_prompt = PromptTemplate.from_template(template)
|
58 |
+
|
59 |
+
from langchain_core.output_parsers import StrOutputParser
|
60 |
+
from langchain_core.runnables import RunnablePassthrough
|
61 |
+
|
62 |
+
rag_chain = (
|
63 |
+
{"context": retriever, "question": RunnablePassthrough()}
|
64 |
+
| rag_prompt
|
65 |
+
| llm
|
66 |
+
| StrOutputParser()
|
67 |
+
)
|
68 |
+
|
69 |
+
import gradio as gr
|
70 |
+
|
71 |
+
def rag_memory_stream(message, history):
|
72 |
+
partial_text = ""
|
73 |
+
for new_text in rag_chain.stream(message):
|
74 |
+
partial_text += new_text
|
75 |
+
yield partial_text
|
76 |
+
|
77 |
+
examples = [
|
78 |
+
"I am not in a good mood",
|
79 |
+
"what is the possible symptompts of depression?"
|
80 |
+
]
|
81 |
+
|
82 |
+
description = "Real-time AI App with Groq API and LangChain to Answer medical questions"
|
83 |
+
|
84 |
+
|
85 |
+
title = "ThriveTalk Expert :) Try me!"
|
86 |
+
demo = gr.ChatInterface(fn=rag_memory_stream,
|
87 |
+
type="messages",
|
88 |
+
title=title,
|
89 |
+
description=description,
|
90 |
+
fill_height=True,
|
91 |
+
examples=examples,
|
92 |
+
theme="glass",
|
93 |
+
)
|
94 |
+
|
95 |
+
|
96 |
+
if __name__ == "__main__":
|
97 |
+
demo.launch()
|