chore: update
Browse files- app.py +1 -1
- autotab.py +25 -12
- requirements.txt +1 -0
app.py
CHANGED
@@ -51,7 +51,7 @@ inputs = [
|
|
51 |
value='{"temperature": 0, "max_tokens": 128}',
|
52 |
label="Generation Config in Dict",
|
53 |
),
|
54 |
-
gr.Slider(value=0.
|
55 |
gr.Slider(value=100, minimum=1, maximum=1000, step=1, label="Save Every N Steps"),
|
56 |
gr.Textbox(
|
57 |
value="sk-exhahhjfqyanmwewndukcqtrpegfdbwszkjucvcpajdufiah", label="API Key"
|
|
|
51 |
value='{"temperature": 0, "max_tokens": 128}',
|
52 |
label="Generation Config in Dict",
|
53 |
),
|
54 |
+
gr.Slider(value=0.1, minimum=0, maximum=10, label="Request Interval in Seconds"),
|
55 |
gr.Slider(value=100, minimum=1, maximum=1000, step=1, label="Save Every N Steps"),
|
56 |
gr.Textbox(
|
57 |
value="sk-exhahhjfqyanmwewndukcqtrpegfdbwszkjucvcpajdufiah", label="API Key"
|
autotab.py
CHANGED
@@ -1,8 +1,10 @@
|
|
1 |
import re
|
2 |
import time
|
|
|
3 |
|
4 |
import openai
|
5 |
import pandas as pd
|
|
|
6 |
from tqdm import tqdm
|
7 |
|
8 |
|
@@ -42,8 +44,10 @@ class AutoTab:
|
|
42 |
|
43 |
# βββ LLM ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
44 |
|
|
|
45 |
def openai_request(self, query: str) -> str:
|
46 |
"""Make a request to an OpenAI-format API."""
|
|
|
47 |
client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
|
48 |
response = client.chat.completions.create(
|
49 |
model=self.model_name,
|
@@ -103,16 +107,23 @@ class AutoTab:
|
|
103 |
|
104 |
# βββ Engine βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
105 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
106 |
def batch_prediction(self, start_index: int, end_index: int):
|
107 |
-
"""Process a batch of predictions."""
|
108 |
-
|
109 |
-
|
110 |
-
self.
|
111 |
)
|
112 |
-
|
113 |
for field_name in self.output_fields:
|
114 |
self.data.at[i, field_name] = extracted_fields.get(field_name, "")
|
115 |
-
time.sleep(self.request_interval)
|
116 |
|
117 |
def run(self):
|
118 |
self.data, self.input_fields, self.output_fields = self.load_excel()
|
@@ -123,12 +134,14 @@ class AutoTab:
|
|
123 |
self.num_data = len(self.data)
|
124 |
self.num_examples = len(self.data.dropna(subset=self.output_fields))
|
125 |
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
|
|
|
|
132 |
self.data.to_excel(self.out_file_path, index=False)
|
133 |
self.data.to_excel(self.out_file_path, index=False)
|
134 |
print(f"Results saved to {self.out_file_path}")
|
|
|
1 |
import re
|
2 |
import time
|
3 |
+
from concurrent.futures import ThreadPoolExecutor
|
4 |
|
5 |
import openai
|
6 |
import pandas as pd
|
7 |
+
from tenacity import retry, stop_after_attempt, wait_random_exponential
|
8 |
from tqdm import tqdm
|
9 |
|
10 |
|
|
|
44 |
|
45 |
# βββ LLM ββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
46 |
|
47 |
+
@retry(wait=wait_random_exponential(min=20, max=60), stop=stop_after_attempt(6))
|
48 |
def openai_request(self, query: str) -> str:
|
49 |
"""Make a request to an OpenAI-format API."""
|
50 |
+
time.sleep(self.request_interval)
|
51 |
client = openai.OpenAI(api_key=self.api_key, base_url=self.base_url)
|
52 |
response = client.chat.completions.create(
|
53 |
model=self.model_name,
|
|
|
107 |
|
108 |
# βββ Engine βββββββββββββββββββββββββββββββββββββββββββββββββββββββββββ
|
109 |
|
110 |
+
def _predict_and_extract(self, i: int) -> dict[str, str]:
|
111 |
+
"""Helper function to predict and extract fields for a single row."""
|
112 |
+
prediction = self.predict_output(
|
113 |
+
self.in_context, self.data.iloc[i], self.input_fields
|
114 |
+
)
|
115 |
+
extracted_fields = self.extract_fields(prediction, self.output_fields)
|
116 |
+
return extracted_fields
|
117 |
+
|
118 |
def batch_prediction(self, start_index: int, end_index: int):
|
119 |
+
"""Process a batch of predictions asynchronously."""
|
120 |
+
with ThreadPoolExecutor() as executor:
|
121 |
+
results = list(
|
122 |
+
executor.map(self._predict_and_extract, range(start_index, end_index))
|
123 |
)
|
124 |
+
for i, extracted_fields in zip(range(start_index, end_index), results):
|
125 |
for field_name in self.output_fields:
|
126 |
self.data.at[i, field_name] = extracted_fields.get(field_name, "")
|
|
|
127 |
|
128 |
def run(self):
|
129 |
self.data, self.input_fields, self.output_fields = self.load_excel()
|
|
|
134 |
self.num_data = len(self.data)
|
135 |
self.num_examples = len(self.data.dropna(subset=self.output_fields))
|
136 |
|
137 |
+
tqdm_bar = tqdm(range(self.num_examples, self.num_data, self.save_every))
|
138 |
+
for start in tqdm_bar:
|
139 |
+
tqdm_bar.update(start)
|
140 |
+
end = min(start + self.save_every, self.num_data)
|
141 |
+
try:
|
142 |
+
self.batch_prediction(start, end)
|
143 |
+
except Exception as e:
|
144 |
+
print(e)
|
145 |
self.data.to_excel(self.out_file_path, index=False)
|
146 |
self.data.to_excel(self.out_file_path, index=False)
|
147 |
print(f"Results saved to {self.out_file_path}")
|
requirements.txt
CHANGED
@@ -3,3 +3,4 @@ openai
|
|
3 |
argparse
|
4 |
openpyxl
|
5 |
gradio
|
|
|
|
3 |
argparse
|
4 |
openpyxl
|
5 |
gradio
|
6 |
+
tenacity
|