File size: 4,110 Bytes
ef38953
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145

import streamlit as st 
import pandas as pd

from transformers import AutoTokenizer, AutoModel,AutoModelForSequenceClassification
import torch



num_classes = 6





#tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
tokenizer = AutoTokenizer.from_pretrained("KhaldiAbderrhmane/bert-emotion",trust_remote_code=True)



model = AutoModelForSequenceClassification.from_pretrained("KhaldiAbderrhmane/bert-emotion",trust_remote_code=True)



def prediction_sentiment(review):
    

    t= tokenizer(review, truncation=True, padding=True, max_length=128, return_tensors='pt')
    inpt  = t['input_ids']
    mask  = t['attention_mask']



    
    outputs = model(inpt,mask)
    

    outputs = outputs.logits


    
    predicted= torch.max(outputs, 1).indices 

    if predicted == 0:
        sentiment = "Sadness"
    elif predicted == 1:
        sentiment = "Joy"
    elif predicted == 2:
        sentiment = "Love"
    elif predicted == 3:
        sentiment = "Anger"
    elif predicted == 4:
        sentiment = "Fear"
    else:
        sentiment = "Surprise"
    return sentiment





users = {"abdelmalek": [["this movie was so nice", "positive"], ["what the hell was that", "negative"], ["man this was good", "positive"]]}
columns = ["comment", "sentiment"]
user_name = st.text_input("User Name")

if user_name:
    if user_name in users:
        user_input = st.text_input("Enter your comment:")
        

        if user_input:
            
            sentiment = prediction_sentiment(user_input)
            st.write('Your sentiment is:', sentiment)
            users[user_name].append([user_input, sentiment]) 
    else:
        users[user_name] = []
        st.write("Your user name has been added.") 
        user_input = st.text_input("Enter your comment:")
        if user_input:
            sentiment = prediction_sentiment(user_input)
            st.write('Your sentiment is:', sentiment) 
            users[user_name].append([user_input, sentiment]) 

if st.button("Your comment:"):
    if user_name in users:
        df_t = pd.DataFrame(users[user_name], columns=columns)
        card_css = """
        <style>
        .card {
            background-color: #1A2E4D;
            border-radius: 10px;
            padding: 20px;
            margin: 10px 0;
            box-shadow: 0 4px 8px rgba(0, 0, 0, 0.1);
        }
        .card-title {
            font-size: 24px;
            font-weight: bold;
            color: #F4F6FF;
        }
        .card-content {
            font-size: 18px;
            color: #52709E;
        }
        .sentiment-circle {
            width: 15px; /* Adjust size as needed */
            height: 15px; /* Adjust size as needed */
            border-radius: 50%;
            display: inline-block;
            position: absolute;
            top: 50%;
            right: 0;
            transform: translateY(-50%);
            margin-right: 10px; /* Space between circle and text */
        }
        .positive {
            
            background-color: #82D853; /* Green background for positive sentiment */
        }
        .negative {
            
            background-color: #D85353; /* Red background for negative sentiment */
        }
        </style>
        """
        st.markdown(card_css, unsafe_allow_html=True)

        for comment, sentiment in df_t.values:
            sentiment_class = "positive" if sentiment == "positive" else "negative"
            sentiment_circle = f'<div class="sentiment-circle {sentiment_class}" style="background-color: {"#82D853" if sentiment == "positive" else "#D85353"};"></div>'
            border_color = "border: 2px solid #82D853;" if sentiment == "positive" else "border: 2px solid #D85353;"
            card_content = f"""
            <div class="card" style="{border_color}">
        <div class="card-title">{user_name}</div>
        <div class="card-content">
            {comment} 
            {sentiment_circle}  
        </div>
    </div>
            """
            st.markdown(card_content, unsafe_allow_html=True)
    else:
        st.error("No history available for this user.")