from transformers import AutoModelForCausalLM, AutoTokenizer import gradio as gr import torch # DialoGPT Modell und Tokenizer laden tokenizer = AutoTokenizer.from_pretrained("microsoft/DialoGPT-medium") model = AutoModelForCausalLM.from_pretrained("microsoft/DialoGPT-medium") def chat_with_kiki_gpt(user_input): # Benutzereingabe kodieren und Modellantwort generieren input_ids = tokenizer.encode(user_input + tokenizer.eos_token, return_tensors='pt') chat_history_ids = model.generate(input_ids, max_length=1000, pad_token_id=tokenizer.eos_token_id) chat_output = tokenizer.decode(chat_history_ids[:, input_ids.shape[-1]:][0], skip_special_tokens=True) return f"KIKI-GPT: {chat_output}" # Gradio-Benutzeroberfläche interface = gr.Interface( fn=chat_with_kiki_gpt, inputs=gr.inputs.Textbox(lines=5, placeholder="Type your message to KIKI-GPT here..."), outputs=gr.outputs.Textbox(), title="KIKI-GPT", description="Welcome to KIKI-GPT - a project on Hugging Face Spaces using Microsoft's DialoGPT. One of the fastest and best performing models for robotics! Created by Keyvan Hardani. For inquiries, contact: hello@keyvan.ai.", live=True ) interface.launch()