import streamlit as st import pandas as pd # from __future__ import division import numpy as np import xgboost as xgb x = st.slider("Select a value") st.write(x, "squared is", x * x) data = pd.read_csv("hf://datasets/Ammok/hair_health/predict_hair_fall.csv") # Calculate split point (70%) split_point = int(len(data) * 0.7) # Split into train and test train = data.iloc[:split_point] test = data.iloc[split_point:] # If you need numpy arrays instead of dataframes train_np = train.to_numpy() test_np = test.to_numpy() st.dataframe(data)