File size: 11,451 Bytes
2cf0297
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
<script lang="ts">
	import * as ort from 'onnxruntime-web';
	import { AutoModel, AutoTokenizer } from '@huggingface/transformers';

	import { onMount, getContext } from 'svelte';
	import { models } from '$lib/stores';

	import Spinner from '$lib/components/common/Spinner.svelte';
	import Tooltip from '$lib/components/common/Tooltip.svelte';
	import MagnifyingGlass from '$lib/components/icons/MagnifyingGlass.svelte';

	const i18n = getContext('i18n');

	const EMBEDDING_MODEL = 'TaylorAI/bge-micro-v2';

	let tokenizer = null;
	let model = null;

	export let feedbacks = [];

	let rankedModels = [];

	let query = '';

	let tagEmbeddings = new Map();
	let loadingLeaderboard = true;
	let debounceTimer;

	type Feedback = {
		id: string;
		data: {
			rating: number;
			model_id: string;
			sibling_model_ids: string[] | null;
			reason: string;
			comment: string;
			tags: string[];
		};
		user: {
			name: string;
			profile_image_url: string;
		};
		updated_at: number;
	};

	type ModelStats = {
		rating: number;
		won: number;
		lost: number;
	};

	//////////////////////
	//
	// Rank models by Elo rating
	//
	//////////////////////

	const rankHandler = async (similarities: Map<string, number> = new Map()) => {
		const modelStats = calculateModelStats(feedbacks, similarities);

		rankedModels = $models
			.filter((m) => m?.owned_by !== 'arena' && (m?.info?.meta?.hidden ?? false) !== true)
			.map((model) => {
				const stats = modelStats.get(model.id);
				return {
					...model,
					rating: stats ? Math.round(stats.rating) : '-',
					stats: {
						count: stats ? stats.won + stats.lost : 0,
						won: stats ? stats.won.toString() : '-',
						lost: stats ? stats.lost.toString() : '-'
					}
				};
			})
			.sort((a, b) => {
				if (a.rating === '-' && b.rating !== '-') return 1;
				if (b.rating === '-' && a.rating !== '-') return -1;
				if (a.rating !== '-' && b.rating !== '-') return b.rating - a.rating;
				return a.name.localeCompare(b.name);
			});

		loadingLeaderboard = false;
	};

	function calculateModelStats(
		feedbacks: Feedback[],
		similarities: Map<string, number>
	): Map<string, ModelStats> {
		const stats = new Map<string, ModelStats>();
		const K = 32;

		function getOrDefaultStats(modelId: string): ModelStats {
			return stats.get(modelId) || { rating: 1000, won: 0, lost: 0 };
		}

		function updateStats(modelId: string, ratingChange: number, outcome: number) {
			const currentStats = getOrDefaultStats(modelId);
			currentStats.rating += ratingChange;
			if (outcome === 1) currentStats.won++;
			else if (outcome === 0) currentStats.lost++;
			stats.set(modelId, currentStats);
		}

		function calculateEloChange(
			ratingA: number,
			ratingB: number,
			outcome: number,
			similarity: number
		): number {
			const expectedScore = 1 / (1 + Math.pow(10, (ratingB - ratingA) / 400));
			return K * (outcome - expectedScore) * similarity;
		}

		feedbacks.forEach((feedback) => {
			const modelA = feedback.data.model_id;
			const statsA = getOrDefaultStats(modelA);
			let outcome: number;

			switch (feedback.data.rating.toString()) {
				case '1':
					outcome = 1;
					break;
				case '-1':
					outcome = 0;
					break;
				default:
					return; // Skip invalid ratings
			}

			// If the query is empty, set similarity to 1, else get the similarity from the map
			const similarity = query !== '' ? similarities.get(feedback.id) || 0 : 1;
			const opponents = feedback.data.sibling_model_ids || [];

			opponents.forEach((modelB) => {
				const statsB = getOrDefaultStats(modelB);
				const changeA = calculateEloChange(statsA.rating, statsB.rating, outcome, similarity);
				const changeB = calculateEloChange(statsB.rating, statsA.rating, 1 - outcome, similarity);

				updateStats(modelA, changeA, outcome);
				updateStats(modelB, changeB, 1 - outcome);
			});
		});

		return stats;
	}

	//////////////////////
	//
	// Calculate cosine similarity
	//
	//////////////////////

	const cosineSimilarity = (vecA, vecB) => {
		// Ensure the lengths of the vectors are the same
		if (vecA.length !== vecB.length) {
			throw new Error('Vectors must be the same length');
		}

		// Calculate the dot product
		let dotProduct = 0;
		let normA = 0;
		let normB = 0;

		for (let i = 0; i < vecA.length; i++) {
			dotProduct += vecA[i] * vecB[i];
			normA += vecA[i] ** 2;
			normB += vecB[i] ** 2;
		}

		// Calculate the magnitudes
		normA = Math.sqrt(normA);
		normB = Math.sqrt(normB);

		// Avoid division by zero
		if (normA === 0 || normB === 0) {
			return 0;
		}

		// Return the cosine similarity
		return dotProduct / (normA * normB);
	};

	const calculateMaxSimilarity = (queryEmbedding, tagEmbeddings: Map<string, number[]>) => {
		let maxSimilarity = 0;
		for (const tagEmbedding of tagEmbeddings.values()) {
			const similarity = cosineSimilarity(queryEmbedding, tagEmbedding);
			maxSimilarity = Math.max(maxSimilarity, similarity);
		}
		return maxSimilarity;
	};

	//////////////////////
	//
	// Embedding functions
	//
	//////////////////////

	const loadEmbeddingModel = async () => {
		// Check if the tokenizer and model are already loaded and stored in the window object
		if (!window.tokenizer) {
			window.tokenizer = await AutoTokenizer.from_pretrained(EMBEDDING_MODEL);
		}

		if (!window.model) {
			window.model = await AutoModel.from_pretrained(EMBEDDING_MODEL);
		}

		// Use the tokenizer and model from the window object
		tokenizer = window.tokenizer;
		model = window.model;

		// Pre-compute embeddings for all unique tags
		const allTags = new Set(feedbacks.flatMap((feedback) => feedback.data.tags || []));
		await getTagEmbeddings(Array.from(allTags));
	};

	const getEmbeddings = async (text: string) => {
		const tokens = await tokenizer(text);
		const output = await model(tokens);

		// Perform mean pooling on the last hidden states
		const embeddings = output.last_hidden_state.mean(1);
		return embeddings.ort_tensor.data;
	};

	const getTagEmbeddings = async (tags: string[]) => {
		const embeddings = new Map();
		for (const tag of tags) {
			if (!tagEmbeddings.has(tag)) {
				tagEmbeddings.set(tag, await getEmbeddings(tag));
			}
			embeddings.set(tag, tagEmbeddings.get(tag));
		}
		return embeddings;
	};

	const debouncedQueryHandler = async () => {
		loadingLeaderboard = true;

		if (query.trim() === '') {
			rankHandler();
			return;
		}

		clearTimeout(debounceTimer);

		debounceTimer = setTimeout(async () => {
			const queryEmbedding = await getEmbeddings(query);
			const similarities = new Map<string, number>();

			for (const feedback of feedbacks) {
				const feedbackTags = feedback.data.tags || [];
				const tagEmbeddings = await getTagEmbeddings(feedbackTags);
				const maxSimilarity = calculateMaxSimilarity(queryEmbedding, tagEmbeddings);
				similarities.set(feedback.id, maxSimilarity);
			}

			rankHandler(similarities);
		}, 1500); // Debounce for 1.5 seconds
	};

	$: query, debouncedQueryHandler();

	onMount(async () => {
		rankHandler();
	});
</script>

<div class="mt-0.5 mb-2 gap-1 flex flex-col md:flex-row justify-between">
	<div class="flex md:self-center text-lg font-medium px-0.5 shrink-0 items-center">
		<div class=" gap-1">
			{$i18n.t('Leaderboard')}
		</div>

		<div class="flex self-center w-[1px] h-6 mx-2.5 bg-gray-50 dark:bg-gray-850" />

		<span class="text-lg font-medium text-gray-500 dark:text-gray-300 mr-1.5"
			>{rankedModels.length}</span
		>
	</div>

	<div class=" flex space-x-2">
		<Tooltip content={$i18n.t('Re-rank models by topic similarity')}>
			<div class="flex flex-1">
				<div class=" self-center ml-1 mr-3">
					<MagnifyingGlass className="size-3" />
				</div>
				<input
					class=" w-full text-sm pr-4 py-1 rounded-r-xl outline-none bg-transparent"
					bind:value={query}
					placeholder={$i18n.t('Search')}
					on:focus={() => {
						loadEmbeddingModel();
					}}
				/>
			</div>
		</Tooltip>
	</div>
</div>

<div class="scrollbar-hidden relative whitespace-nowrap overflow-x-auto max-w-full rounded pt-0.5">
	{#if loadingLeaderboard}
		<div class=" absolute top-0 bottom-0 left-0 right-0 flex">
			<div class="m-auto">
				<Spinner />
			</div>
		</div>
	{/if}
	{#if (rankedModels ?? []).length === 0}
		<div class="text-center text-xs text-gray-500 dark:text-gray-400 py-1">
			{$i18n.t('No models found')}
		</div>
	{:else}
		<table
			class="w-full text-sm text-left text-gray-500 dark:text-gray-400 table-auto max-w-full rounded {loadingLeaderboard
				? 'opacity-20'
				: ''}"
		>
			<thead
				class="text-xs text-gray-700 uppercase bg-gray-50 dark:bg-gray-850 dark:text-gray-400 -translate-y-0.5"
			>
				<tr class="">
					<th scope="col" class="px-3 py-1.5 cursor-pointer select-none w-3">
						{$i18n.t('RK')}
					</th>
					<th scope="col" class="px-3 py-1.5 cursor-pointer select-none">
						{$i18n.t('Model')}
					</th>
					<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-fit">
						{$i18n.t('Rating')}
					</th>
					<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5">
						{$i18n.t('Won')}
					</th>
					<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5">
						{$i18n.t('Lost')}
					</th>
				</tr>
			</thead>
			<tbody class="">
				{#each rankedModels as model, modelIdx (model.id)}
					<tr class="bg-white dark:bg-gray-900 dark:border-gray-850 text-xs group">
						<td class="px-3 py-1.5 text-left font-medium text-gray-900 dark:text-white w-fit">
							<div class=" line-clamp-1">
								{model?.rating !== '-' ? modelIdx + 1 : '-'}
							</div>
						</td>
						<td class="px-3 py-1.5 flex flex-col justify-center">
							<div class="flex items-center gap-2">
								<div class="flex-shrink-0">
									<img
										src={model?.info?.meta?.profile_image_url ?? '/favicon.png'}
										alt={model.name}
										class="size-5 rounded-full object-cover shrink-0"
									/>
								</div>

								<div class="font-medium text-gray-800 dark:text-gray-200 pr-4">
									{model.name}
								</div>
							</div>
						</td>
						<td class="px-3 py-1.5 text-right font-medium text-gray-900 dark:text-white w-max">
							{model.rating}
						</td>

						<td class=" px-3 py-1.5 text-right font-semibold text-green-500">
							<div class=" w-10">
								{#if model.stats.won === '-'}
									-
								{:else}
									<span class="hidden group-hover:inline"
										>{((model.stats.won / model.stats.count) * 100).toFixed(1)}%</span
									>
									<span class=" group-hover:hidden">{model.stats.won}</span>
								{/if}
							</div>
						</td>

						<td class="px-3 py-1.5 text-right font-semibold text-red-500">
							<div class=" w-10">
								{#if model.stats.lost === '-'}
									-
								{:else}
									<span class="hidden group-hover:inline"
										>{((model.stats.lost / model.stats.count) * 100).toFixed(1)}%</span
									>
									<span class=" group-hover:hidden">{model.stats.lost}</span>
								{/if}
							</div>
						</td>
					</tr>
				{/each}
			</tbody>
		</table>
	{/if}
</div>

<div class=" text-gray-500 text-xs mt-1.5 w-full flex justify-end">
	<div class=" text-right">
		<div class="line-clamp-1">
			ⓘ {$i18n.t(
				'The evaluation leaderboard is based on the Elo rating system and is updated in real-time.'
			)}
		</div>
		{$i18n.t(
			'The leaderboard is currently in beta, and we may adjust the rating calculations as we refine the algorithm.'
		)}
	</div>
</div>