Spaces:
Running
Running
File size: 11,451 Bytes
2cf0297 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 |
<script lang="ts">
import * as ort from 'onnxruntime-web';
import { AutoModel, AutoTokenizer } from '@huggingface/transformers';
import { onMount, getContext } from 'svelte';
import { models } from '$lib/stores';
import Spinner from '$lib/components/common/Spinner.svelte';
import Tooltip from '$lib/components/common/Tooltip.svelte';
import MagnifyingGlass from '$lib/components/icons/MagnifyingGlass.svelte';
const i18n = getContext('i18n');
const EMBEDDING_MODEL = 'TaylorAI/bge-micro-v2';
let tokenizer = null;
let model = null;
export let feedbacks = [];
let rankedModels = [];
let query = '';
let tagEmbeddings = new Map();
let loadingLeaderboard = true;
let debounceTimer;
type Feedback = {
id: string;
data: {
rating: number;
model_id: string;
sibling_model_ids: string[] | null;
reason: string;
comment: string;
tags: string[];
};
user: {
name: string;
profile_image_url: string;
};
updated_at: number;
};
type ModelStats = {
rating: number;
won: number;
lost: number;
};
//////////////////////
//
// Rank models by Elo rating
//
//////////////////////
const rankHandler = async (similarities: Map<string, number> = new Map()) => {
const modelStats = calculateModelStats(feedbacks, similarities);
rankedModels = $models
.filter((m) => m?.owned_by !== 'arena' && (m?.info?.meta?.hidden ?? false) !== true)
.map((model) => {
const stats = modelStats.get(model.id);
return {
...model,
rating: stats ? Math.round(stats.rating) : '-',
stats: {
count: stats ? stats.won + stats.lost : 0,
won: stats ? stats.won.toString() : '-',
lost: stats ? stats.lost.toString() : '-'
}
};
})
.sort((a, b) => {
if (a.rating === '-' && b.rating !== '-') return 1;
if (b.rating === '-' && a.rating !== '-') return -1;
if (a.rating !== '-' && b.rating !== '-') return b.rating - a.rating;
return a.name.localeCompare(b.name);
});
loadingLeaderboard = false;
};
function calculateModelStats(
feedbacks: Feedback[],
similarities: Map<string, number>
): Map<string, ModelStats> {
const stats = new Map<string, ModelStats>();
const K = 32;
function getOrDefaultStats(modelId: string): ModelStats {
return stats.get(modelId) || { rating: 1000, won: 0, lost: 0 };
}
function updateStats(modelId: string, ratingChange: number, outcome: number) {
const currentStats = getOrDefaultStats(modelId);
currentStats.rating += ratingChange;
if (outcome === 1) currentStats.won++;
else if (outcome === 0) currentStats.lost++;
stats.set(modelId, currentStats);
}
function calculateEloChange(
ratingA: number,
ratingB: number,
outcome: number,
similarity: number
): number {
const expectedScore = 1 / (1 + Math.pow(10, (ratingB - ratingA) / 400));
return K * (outcome - expectedScore) * similarity;
}
feedbacks.forEach((feedback) => {
const modelA = feedback.data.model_id;
const statsA = getOrDefaultStats(modelA);
let outcome: number;
switch (feedback.data.rating.toString()) {
case '1':
outcome = 1;
break;
case '-1':
outcome = 0;
break;
default:
return; // Skip invalid ratings
}
// If the query is empty, set similarity to 1, else get the similarity from the map
const similarity = query !== '' ? similarities.get(feedback.id) || 0 : 1;
const opponents = feedback.data.sibling_model_ids || [];
opponents.forEach((modelB) => {
const statsB = getOrDefaultStats(modelB);
const changeA = calculateEloChange(statsA.rating, statsB.rating, outcome, similarity);
const changeB = calculateEloChange(statsB.rating, statsA.rating, 1 - outcome, similarity);
updateStats(modelA, changeA, outcome);
updateStats(modelB, changeB, 1 - outcome);
});
});
return stats;
}
//////////////////////
//
// Calculate cosine similarity
//
//////////////////////
const cosineSimilarity = (vecA, vecB) => {
// Ensure the lengths of the vectors are the same
if (vecA.length !== vecB.length) {
throw new Error('Vectors must be the same length');
}
// Calculate the dot product
let dotProduct = 0;
let normA = 0;
let normB = 0;
for (let i = 0; i < vecA.length; i++) {
dotProduct += vecA[i] * vecB[i];
normA += vecA[i] ** 2;
normB += vecB[i] ** 2;
}
// Calculate the magnitudes
normA = Math.sqrt(normA);
normB = Math.sqrt(normB);
// Avoid division by zero
if (normA === 0 || normB === 0) {
return 0;
}
// Return the cosine similarity
return dotProduct / (normA * normB);
};
const calculateMaxSimilarity = (queryEmbedding, tagEmbeddings: Map<string, number[]>) => {
let maxSimilarity = 0;
for (const tagEmbedding of tagEmbeddings.values()) {
const similarity = cosineSimilarity(queryEmbedding, tagEmbedding);
maxSimilarity = Math.max(maxSimilarity, similarity);
}
return maxSimilarity;
};
//////////////////////
//
// Embedding functions
//
//////////////////////
const loadEmbeddingModel = async () => {
// Check if the tokenizer and model are already loaded and stored in the window object
if (!window.tokenizer) {
window.tokenizer = await AutoTokenizer.from_pretrained(EMBEDDING_MODEL);
}
if (!window.model) {
window.model = await AutoModel.from_pretrained(EMBEDDING_MODEL);
}
// Use the tokenizer and model from the window object
tokenizer = window.tokenizer;
model = window.model;
// Pre-compute embeddings for all unique tags
const allTags = new Set(feedbacks.flatMap((feedback) => feedback.data.tags || []));
await getTagEmbeddings(Array.from(allTags));
};
const getEmbeddings = async (text: string) => {
const tokens = await tokenizer(text);
const output = await model(tokens);
// Perform mean pooling on the last hidden states
const embeddings = output.last_hidden_state.mean(1);
return embeddings.ort_tensor.data;
};
const getTagEmbeddings = async (tags: string[]) => {
const embeddings = new Map();
for (const tag of tags) {
if (!tagEmbeddings.has(tag)) {
tagEmbeddings.set(tag, await getEmbeddings(tag));
}
embeddings.set(tag, tagEmbeddings.get(tag));
}
return embeddings;
};
const debouncedQueryHandler = async () => {
loadingLeaderboard = true;
if (query.trim() === '') {
rankHandler();
return;
}
clearTimeout(debounceTimer);
debounceTimer = setTimeout(async () => {
const queryEmbedding = await getEmbeddings(query);
const similarities = new Map<string, number>();
for (const feedback of feedbacks) {
const feedbackTags = feedback.data.tags || [];
const tagEmbeddings = await getTagEmbeddings(feedbackTags);
const maxSimilarity = calculateMaxSimilarity(queryEmbedding, tagEmbeddings);
similarities.set(feedback.id, maxSimilarity);
}
rankHandler(similarities);
}, 1500); // Debounce for 1.5 seconds
};
$: query, debouncedQueryHandler();
onMount(async () => {
rankHandler();
});
</script>
<div class="mt-0.5 mb-2 gap-1 flex flex-col md:flex-row justify-between">
<div class="flex md:self-center text-lg font-medium px-0.5 shrink-0 items-center">
<div class=" gap-1">
{$i18n.t('Leaderboard')}
</div>
<div class="flex self-center w-[1px] h-6 mx-2.5 bg-gray-50 dark:bg-gray-850" />
<span class="text-lg font-medium text-gray-500 dark:text-gray-300 mr-1.5"
>{rankedModels.length}</span
>
</div>
<div class=" flex space-x-2">
<Tooltip content={$i18n.t('Re-rank models by topic similarity')}>
<div class="flex flex-1">
<div class=" self-center ml-1 mr-3">
<MagnifyingGlass className="size-3" />
</div>
<input
class=" w-full text-sm pr-4 py-1 rounded-r-xl outline-none bg-transparent"
bind:value={query}
placeholder={$i18n.t('Search')}
on:focus={() => {
loadEmbeddingModel();
}}
/>
</div>
</Tooltip>
</div>
</div>
<div class="scrollbar-hidden relative whitespace-nowrap overflow-x-auto max-w-full rounded pt-0.5">
{#if loadingLeaderboard}
<div class=" absolute top-0 bottom-0 left-0 right-0 flex">
<div class="m-auto">
<Spinner />
</div>
</div>
{/if}
{#if (rankedModels ?? []).length === 0}
<div class="text-center text-xs text-gray-500 dark:text-gray-400 py-1">
{$i18n.t('No models found')}
</div>
{:else}
<table
class="w-full text-sm text-left text-gray-500 dark:text-gray-400 table-auto max-w-full rounded {loadingLeaderboard
? 'opacity-20'
: ''}"
>
<thead
class="text-xs text-gray-700 uppercase bg-gray-50 dark:bg-gray-850 dark:text-gray-400 -translate-y-0.5"
>
<tr class="">
<th scope="col" class="px-3 py-1.5 cursor-pointer select-none w-3">
{$i18n.t('RK')}
</th>
<th scope="col" class="px-3 py-1.5 cursor-pointer select-none">
{$i18n.t('Model')}
</th>
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-fit">
{$i18n.t('Rating')}
</th>
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5">
{$i18n.t('Won')}
</th>
<th scope="col" class="px-3 py-1.5 text-right cursor-pointer select-none w-5">
{$i18n.t('Lost')}
</th>
</tr>
</thead>
<tbody class="">
{#each rankedModels as model, modelIdx (model.id)}
<tr class="bg-white dark:bg-gray-900 dark:border-gray-850 text-xs group">
<td class="px-3 py-1.5 text-left font-medium text-gray-900 dark:text-white w-fit">
<div class=" line-clamp-1">
{model?.rating !== '-' ? modelIdx + 1 : '-'}
</div>
</td>
<td class="px-3 py-1.5 flex flex-col justify-center">
<div class="flex items-center gap-2">
<div class="flex-shrink-0">
<img
src={model?.info?.meta?.profile_image_url ?? '/favicon.png'}
alt={model.name}
class="size-5 rounded-full object-cover shrink-0"
/>
</div>
<div class="font-medium text-gray-800 dark:text-gray-200 pr-4">
{model.name}
</div>
</div>
</td>
<td class="px-3 py-1.5 text-right font-medium text-gray-900 dark:text-white w-max">
{model.rating}
</td>
<td class=" px-3 py-1.5 text-right font-semibold text-green-500">
<div class=" w-10">
{#if model.stats.won === '-'}
-
{:else}
<span class="hidden group-hover:inline"
>{((model.stats.won / model.stats.count) * 100).toFixed(1)}%</span
>
<span class=" group-hover:hidden">{model.stats.won}</span>
{/if}
</div>
</td>
<td class="px-3 py-1.5 text-right font-semibold text-red-500">
<div class=" w-10">
{#if model.stats.lost === '-'}
-
{:else}
<span class="hidden group-hover:inline"
>{((model.stats.lost / model.stats.count) * 100).toFixed(1)}%</span
>
<span class=" group-hover:hidden">{model.stats.lost}</span>
{/if}
</div>
</td>
</tr>
{/each}
</tbody>
</table>
{/if}
</div>
<div class=" text-gray-500 text-xs mt-1.5 w-full flex justify-end">
<div class=" text-right">
<div class="line-clamp-1">
ⓘ {$i18n.t(
'The evaluation leaderboard is based on the Elo rating system and is updated in real-time.'
)}
</div>
{$i18n.t(
'The leaderboard is currently in beta, and we may adjust the rating calculations as we refine the algorithm.'
)}
</div>
</div>
|