import streamlit as st from transformers import pipeline # Load your model @st.cache_resource def load_model(): return pipeline("text-classification", model="KevSun/Personality_LM") model = load_model() st.title("Personality Prediction App") st.write("Enter your text below to predict personality traits:") user_input = st.text_area("Your text here:") if st.button("Predict"): if user_input: # Process the input and get predictions with st.spinner("Analyzing..."): result = model(user_input) # Display results st.subheader("Predicted personality traits:") for trait in result: st.write(f"- {trait['label']}: {trait['score']:.2f}") else: st.warning("Please enter some text to analyze.") st.info("Note: This is a demonstration and predictions may not be entirely accurate.")