Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,48 +1,38 @@
|
|
1 |
import streamlit as st
|
2 |
-
import
|
3 |
-
import
|
4 |
|
5 |
-
|
6 |
-
|
|
|
|
|
7 |
|
|
|
8 |
st.title("Personality Prediction App")
|
|
|
9 |
|
10 |
-
#
|
11 |
-
try:
|
12 |
-
import numpy as np
|
13 |
-
except ImportError:
|
14 |
-
st.warning("The numpy library is not installed. Attempting to install it now...")
|
15 |
-
install('numpy')
|
16 |
-
st.experimental_rerun()
|
17 |
-
|
18 |
-
# Check and install transformers library
|
19 |
-
try:
|
20 |
-
from transformers import pipeline
|
21 |
-
except ImportError:
|
22 |
-
st.warning("The transformers library is not installed. Attempting to install it now...")
|
23 |
-
install('transformers')
|
24 |
-
st.experimental_rerun()
|
25 |
-
|
26 |
-
@st.cache_resource
|
27 |
-
def load_model():
|
28 |
-
return pipeline("text-classification", model="KevSun/Personality_LM")
|
29 |
-
|
30 |
-
model = load_model()
|
31 |
-
|
32 |
-
st.write("Enter your text below to predict personality traits:")
|
33 |
-
|
34 |
user_input = st.text_area("Your text here:")
|
35 |
|
36 |
if st.button("Predict"):
|
37 |
if user_input:
|
38 |
-
|
39 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
40 |
|
41 |
-
|
42 |
-
|
43 |
-
|
|
|
44 |
else:
|
45 |
-
st.
|
46 |
|
47 |
st.info("Note: This is a demonstration and predictions may not be entirely accurate.")
|
48 |
|
|
|
1 |
import streamlit as st
|
2 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer
|
3 |
+
import torch
|
4 |
|
5 |
+
# Load the model and tokenizer from Hugging Face
|
6 |
+
model_name = "KevSun/Personality_LM"
|
7 |
+
model = AutoModelForSequenceClassification.from_pretrained(model_name)
|
8 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
9 |
|
10 |
+
# Streamlit app
|
11 |
st.title("Personality Prediction App")
|
12 |
+
st.write("Enter your text below to predict BigFive Personality traits:")
|
13 |
|
14 |
+
# Input text from user
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
15 |
user_input = st.text_area("Your text here:")
|
16 |
|
17 |
if st.button("Predict"):
|
18 |
if user_input:
|
19 |
+
# Tokenize input text
|
20 |
+
inputs = tokenizer(user_input, return_tensors="pt")
|
21 |
+
|
22 |
+
# Get predictions from the model
|
23 |
+
with torch.no_grad():
|
24 |
+
outputs = model(**inputs)
|
25 |
+
|
26 |
+
# Extract the predictions
|
27 |
+
predictions = torch.nn.functional.softmax(outputs.logits, dim=-1)
|
28 |
+
predictions = predictions[0].tolist()
|
29 |
|
30 |
+
# Display the predictions
|
31 |
+
labels = ["Extraversion", "Agreeableness", "Conscientiousness", "Neuroticism", "Openness"]
|
32 |
+
for label, score in zip(labels, predictions):
|
33 |
+
st.write(f"{label}: {score:.4f}")
|
34 |
else:
|
35 |
+
st.write("Please enter your text.")
|
36 |
|
37 |
st.info("Note: This is a demonstration and predictions may not be entirely accurate.")
|
38 |
|