Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
@@ -4,7 +4,6 @@ import transformers
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
from PIL import Image
|
6 |
import warnings
|
7 |
-
import os
|
8 |
|
9 |
# disable some warnings
|
10 |
transformers.logging.set_verbosity_error()
|
@@ -16,7 +15,6 @@ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
|
16 |
print(f"Using device: {device}")
|
17 |
|
18 |
model_name = 'cognitivecomputations/dolphin-vision-72b'
|
19 |
-
model_path = '/data/dolphin-vision-72b'
|
20 |
|
21 |
# Configure 8-bit quantization
|
22 |
quantization_config = BitsAndBytesConfig(
|
@@ -25,32 +23,18 @@ quantization_config = BitsAndBytesConfig(
|
|
25 |
llm_int8_has_fp16_weight=False
|
26 |
)
|
27 |
|
28 |
-
#
|
29 |
-
if not os.path.exists(model_path):
|
30 |
-
print(f"Downloading model to {model_path}")
|
31 |
-
# create model and save it to the specified path
|
32 |
-
model = AutoModelForCausalLM.from_pretrained(
|
33 |
-
model_name,
|
34 |
-
quantization_config=quantization_config,
|
35 |
-
device_map="auto",
|
36 |
-
trust_remote_code=True
|
37 |
-
)
|
38 |
-
model.save_pretrained(model_path)
|
39 |
-
|
40 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
41 |
-
tokenizer.save_pretrained(model_path)
|
42 |
-
else:
|
43 |
-
print(f"Loading model from {model_path}")
|
44 |
-
|
45 |
-
# Load the model from the saved path
|
46 |
model = AutoModelForCausalLM.from_pretrained(
|
47 |
-
|
48 |
quantization_config=quantization_config,
|
49 |
-
device_map="auto",
|
50 |
trust_remote_code=True
|
51 |
)
|
52 |
|
53 |
-
tokenizer = AutoTokenizer.from_pretrained(
|
|
|
|
|
|
|
54 |
|
55 |
def inference(prompt, image):
|
56 |
messages = [
|
|
|
4 |
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
|
5 |
from PIL import Image
|
6 |
import warnings
|
|
|
7 |
|
8 |
# disable some warnings
|
9 |
transformers.logging.set_verbosity_error()
|
|
|
15 |
print(f"Using device: {device}")
|
16 |
|
17 |
model_name = 'cognitivecomputations/dolphin-vision-72b'
|
|
|
18 |
|
19 |
# Configure 8-bit quantization
|
20 |
quantization_config = BitsAndBytesConfig(
|
|
|
23 |
llm_int8_has_fp16_weight=False
|
24 |
)
|
25 |
|
26 |
+
# create model and load it to the specified device with 8-bit quantization
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
model = AutoModelForCausalLM.from_pretrained(
|
28 |
+
model_name,
|
29 |
quantization_config=quantization_config,
|
30 |
+
device_map="auto", # This will automatically use the GPU if available
|
31 |
trust_remote_code=True
|
32 |
)
|
33 |
|
34 |
+
tokenizer = AutoTokenizer.from_pretrained(
|
35 |
+
model_name,
|
36 |
+
trust_remote_code=True
|
37 |
+
)
|
38 |
|
39 |
def inference(prompt, image):
|
40 |
messages = [
|