File size: 7,596 Bytes
2e3dda3 6d16f07 2e3dda3 33bea60 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 6d16f07 2e3dda3 d68f7b0 6d16f07 2e3dda3 6d16f07 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
import gradio as gr
from huggingface_hub import InferenceClient
## Import required packages
from langchain_community.llms import CTransformers
from langchain.prompts import FewShotChatMessagePromptTemplate, ChatPromptTemplate, FewShotPromptTemplate
import gradio as gr
from langchain.chains import LLMChain
from langchain.prompts import PromptTemplate
# from langchain.document_loaders import WikipediaLoader
from langchain.document_loaders import JSONLoader
from langchain.text_splitter import CharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import Chroma
from langchain.chains import RetrievalQA
from operator import itemgetter
from langchain_core.output_parsers import JsonOutputParser
from langchain_core.outputs import Generation
from typing import Any, List, Optional, Type, TypeVar, Union
## Defining few variables
MODEL_PATH = "TheBloke/Mistral-7B-Claude-Chat-GGUF"
MODEL_FILE = "mistral-7b-claude-chat.Q4_K_M.gguf"
MODEL_TYPE = "mistral"
MAX_NEW_TOKENS = 100
temperature = 1
top_p = 0.95
top_k = 50
repetition_penalty = 1.5
## Defining Model
llm = CTransformers(
model = MODEL_PATH,
model_file=MODEL_FILE,
model_type = MODEL_TYPE,
config = {
"max_new_tokens":MAX_NEW_TOKENS,
"temperature": temperature,
"top_p": top_p,
"top_k": top_k,
"repetition_penalty": repetition_penalty,
"last_n_tokens": 4,
"stream": True,
"gpu_layers": 1000
}
)
# One shot inferencing
examples = [
{
"query": "Please classify this name: Ketan Jogadankar",
"answer":"""{
"name": "Ketan Jogadankar",
"label": "person",
"score": 0.99,
"reason": "Ketan is a most famous first name and Jogadankar looks like a surname."
}"""
}
]
example_template = """
User: {query}
{answer}
"""
example_prompt = ChatPromptTemplate.from_messages(
[("human", "{query}"),
("ai", "{answer}")]
)
prefix = """Act as an AI assistant that classifies names into 3 categories (person, business and other) based on the provided rules and example data.
{format_instructions}
Do not append any text to human input.
Rules:
* If the names contains the word "POD", classify it as a other.
* If the names contains the word "trust", classify it as a other.
* If the names contains the word "llc", classify it as a business.
* If the name is non-profit organization then classify it as a other.
Here are some examples:
"""
suffix = """Please classify this name: {name}
"""
few_shot_prompt_template = FewShotChatMessagePromptTemplate(
examples = examples,
example_prompt = example_prompt
)
prompt = ChatPromptTemplate.from_messages(
[
("system",prefix),
few_shot_prompt_template,
("human", suffix)
]
)
format_instructions = """The output should be formatted as a JSON instance that conforms to the JSON schema below.
Here is the output schema:
```
{"properties": {"name": {"title": "Name", "description": "this is the input name passed by human", "type": "string"}, "label": {"title": "Label", "description": "this is the label predicted for input name", "type": "string"}, "score": {"title": "Score", "description": "This is confidence score for predicted label", "type": "number"}, "reason": {"title": "Reason", "description": "This is to explain why AI has predicted that label", "type": "string"}}, "required": ["name", "label", "score", "reason"]}
```
"""
# RAG
data_loader = JSONLoader(file_path="/content/sample_data/anscombe.json",
jq_schema='.',text_content=False)
data = data_loader.load()
data = [doc.page_content for doc in data]
splitter = CharacterTextSplitter(chunk_size=2, chunk_overlap=1)
documents = splitter.create_documents(texts=data)
docs_str = [doc.page_content for doc in documents]
sentence_emb = HuggingFaceEmbeddings(model_name="sentence-transformers/all-mpnet-base-v2")
db = Chroma.from_texts(docs_str, sentence_emb, persist_directory="./temp_db")
db.persist()
retriever = db.as_retriever(
search_type="similarity",
search_kwargs={'k':1})
# Pydantic output validator
from pydantic import BaseModel, Field
class NameClassification(BaseModel):
name:str = Field(description="this is the input name passed by human")
label:str = Field(description="this is the label predicted for input name")
score:float = Field(description="This is confidence score for predicted label")
reason:str = Field(description="This is to explain why AI has predicted that label")
def remove_junks(self, text):
start_index = text.index("{")
stop_index = text.index("}") + 1
return text[start_index:stop_index+1]
def parse(self, text):
text = self.remove_junks(text)
super().invoke(text)
class CustomParser(JsonOutputParser):
def parse_result(self, result: List[Generation], *, partial: bool = False) -> Any:
text = result[0].text
text = text.strip()
text = self.remove_junks(text)
result = [Generation(text= text)]
return super().parse_result(result=result,partial=partial)
def remove_junks(self, text):
start_index = text.index("{")
stop_index = text.index("}") + 1
return text[start_index:stop_index+1]
parser = CustomParser(pydantic_object=NameClassification)
chain = (
{"context": itemgetter("name") | retriever,
"format_instructions": itemgetter("format_instructions"),
"name": itemgetter("name")}
| prompt
| llm
| parser
)
"""
For more information on `huggingface_hub` Inference API support, please check the docs: https://huggingface.co/docs/huggingface_hub/v0.22.2/en/guides/inference
"""
# client = InferenceClient("HuggingFaceH4/zephyr-7b-beta")
def predict(message, history, min_hist_memo = 3):
# streamer = chain(message)
streamer = chain.invoke({"name":message, "format_instructions":format_instructions})
yield str(streamer)
gr.ChatInterface(predict, title="Mistral 7B").queue().launch(debug=True)
# def respond(
# message,
# history: list[tuple[str, str]],
# system_message,
# max_tokens,
# temperature,
# top_p,
# ):
# messages = [{"role": "system", "content": system_message}]
# for val in history:
# if val[0]:
# messages.append({"role": "user", "content": val[0]})
# if val[1]:
# messages.append({"role": "assistant", "content": val[1]})
# messages.append({"role": "user", "content": message})
# response = ""
# for message in client.chat_completion(
# messages,
# max_tokens=max_tokens,
# stream=True,
# temperature=temperature,
# top_p=top_p,
# ):
# token = message.choices[0].delta.content
# response += token
# yield response
# """
# For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
# """
# demo = gr.ChatInterface(
# respond,
# additional_inputs=[
# gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
# gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
# gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
# gr.Slider(
# minimum=0.1,
# maximum=1.0,
# value=0.95,
# step=0.05,
# label="Top-p (nucleus sampling)",
# ),
# ],
# )
# if __name__ == "__main__":
# demo.launch() |