Spaces:
Running
Running
File size: 11,147 Bytes
88490a8 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 |
import librosa
import soundfile as sf
import glob
import os
import copy
import sys
import numpy as np
import pyrubberband as pyrb
import pretty_midi
from omegaconf import OmegaConf
from tqdm.auto import tqdm
from synctoolbox.dtw.mrmsdtw import sync_via_mrmsdtw
from synctoolbox.dtw.utils import (
compute_optimal_chroma_shift,
shift_chroma_vectors,
make_path_strictly_monotonic,
)
from synctoolbox.feature.chroma import (
pitch_to_chroma,
quantize_chroma,
quantized_chroma_to_CENS,
)
from synctoolbox.feature.dlnco import pitch_onset_features_to_DLNCO
from synctoolbox.feature.pitch import audio_to_pitch_features
from synctoolbox.feature.pitch_onset import audio_to_pitch_onset_features
from synctoolbox.feature.utils import estimate_tuning
sys.path.append(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
print(os.path.dirname(os.path.dirname(os.path.abspath(__file__))))
from utils.dsp import normalize, get_stereo
from midiaudiopair import MidiAudioPair
Fs = 22050
feature_rate = 50
step_weights = np.array([1.5, 1.5, 2.0])
threshold_rec = 10 ** 6
def save_delayed_song(
sample,
dry_run,
):
import warnings
warnings.filterwarnings(action="ignore")
song_audio, _ = librosa.load(sample.original_song, Fs)
midi_pm = pretty_midi.PrettyMIDI(sample.original_midi)
if np.power(song_audio, 2).sum() < 1: # low energy: invalid file
print("invalid audio :", sample.original_song)
sample.delete_files_myself()
return
rd = get_aligned_results(midi_pm=midi_pm, song_audio=song_audio)
mix_song = rd["mix_song"]
song_pitch_shifted = rd["song_pitch_shifted"]
midi_warped_pm = rd["midi_warped_pm"]
pitch_shift_for_song_audio = rd["pitch_shift_for_song_audio"]
tuning_offset_song = rd["tuning_offset_song"]
tuning_offset_piano = rd["tuning_offset_piano"]
try:
if dry_run:
print("write audio files: ", sample.song)
else:
sf.write(
file=sample.song,
data=song_pitch_shifted,
samplerate=Fs,
format="wav",
)
except:
print("Fail : ", sample.song)
try:
if dry_run:
print("write warped midi :", sample.midi)
else:
midi_warped_pm.write(sample.midi)
except:
midi_warped_pm._tick_scales = midi_pm._tick_scales
try:
if dry_run:
print("write warped midi2 :", sample.midi)
else:
midi_warped_pm.write(sample.midi)
except:
print("ad-hoc failed midi : ", sample.midi)
print("ad-hoc midi : ", sample.midi)
sample.yaml.song.pitch_shift = pitch_shift_for_song_audio.item()
sample.yaml.song.tuning_offset = tuning_offset_song.item()
sample.yaml.piano.tuning_offset = tuning_offset_piano.item()
OmegaConf.save(sample.yaml, sample.yaml_path)
def get_aligned_results(midi_pm, song_audio):
piano_audio = midi_pm.fluidsynth(Fs)
song_audio = normalize(song_audio)
# The reason for estimating tuning ::
# https://www.audiolabs-erlangen.de/resources/MIR/FMP/C3/C3S1_TranspositionTuning.html
tuning_offset_1 = estimate_tuning(song_audio, Fs)
tuning_offset_2 = estimate_tuning(piano_audio, Fs)
# DLNCO features (Sebastian Ewert, Meinard Müller, and Peter Grosche: High Resolution Audio Synchronization Using Chroma Onset Features, In Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP): 1869–1872, 2009.):
# helpful to increase synchronization accuracy, especially for music with clear onsets.
# Quantized and smoothed chroma : CENS features
# Because, MrMsDTW Requires CENS.
f_chroma_quantized_1, f_DLNCO_1 = get_features_from_audio(
song_audio, tuning_offset_1
)
f_chroma_quantized_2, f_DLNCO_2 = get_features_from_audio(
piano_audio, tuning_offset_2
)
# Shift chroma vectors :
# Otherwise, different keys of two audio leads to degradation of alignment.
opt_chroma_shift = compute_optimal_chroma_shift(
quantized_chroma_to_CENS(f_chroma_quantized_1, 201, 50, feature_rate)[0],
quantized_chroma_to_CENS(f_chroma_quantized_2, 201, 50, feature_rate)[0],
)
f_chroma_quantized_2 = shift_chroma_vectors(f_chroma_quantized_2, opt_chroma_shift)
f_DLNCO_2 = shift_chroma_vectors(f_DLNCO_2, opt_chroma_shift)
wp = sync_via_mrmsdtw(
f_chroma1=f_chroma_quantized_1,
f_onset1=f_DLNCO_1,
f_chroma2=f_chroma_quantized_2,
f_onset2=f_DLNCO_2,
input_feature_rate=feature_rate,
step_weights=step_weights,
threshold_rec=threshold_rec,
verbose=False,
)
wp = make_path_strictly_monotonic(wp)
pitch_shift_for_song_audio = -opt_chroma_shift % 12
if pitch_shift_for_song_audio > 6:
pitch_shift_for_song_audio -= 12
if pitch_shift_for_song_audio != 0:
song_audio_shifted = pyrb.pitch_shift(
song_audio, Fs, pitch_shift_for_song_audio
)
else:
song_audio_shifted = song_audio
time_map_second = wp / feature_rate
midi_pm_warped = copy.deepcopy(midi_pm)
midi_pm_warped = simple_adjust_times(
midi_pm_warped, time_map_second[1], time_map_second[0]
)
piano_audio_warped = midi_pm_warped.fluidsynth(Fs)
song_audio_shifted = normalize(song_audio_shifted)
stereo_sonification_piano = get_stereo(song_audio_shifted, piano_audio_warped)
rd = dict(
mix_song=stereo_sonification_piano,
song_pitch_shifted=song_audio_shifted,
midi_warped_pm=midi_pm_warped,
pitch_shift_for_song_audio=pitch_shift_for_song_audio,
tuning_offset_song=tuning_offset_1,
tuning_offset_piano=tuning_offset_2,
)
return rd
def simple_adjust_times(pm, original_times, new_times):
"""
most of these codes are from original pretty_midi
https://github.com/craffel/pretty-midi/blob/main/pretty_midi/pretty_midi.py
"""
for instrument in pm.instruments:
instrument.notes = [
copy.deepcopy(note)
for note in instrument.notes
if note.start >= original_times[0] and note.end <= original_times[-1]
]
# Get array of note-on locations and correct them
note_ons = np.array(
[note.start for instrument in pm.instruments for note in instrument.notes]
)
adjusted_note_ons = np.interp(note_ons, original_times, new_times)
# Same for note-offs
note_offs = np.array(
[note.end for instrument in pm.instruments for note in instrument.notes]
)
adjusted_note_offs = np.interp(note_offs, original_times, new_times)
# Correct notes
for n, note in enumerate(
[note for instrument in pm.instruments for note in instrument.notes]
):
note.start = (adjusted_note_ons[n] > 0) * adjusted_note_ons[n]
note.end = (adjusted_note_offs[n] > 0) * adjusted_note_offs[n]
# After performing alignment, some notes may have an end time which is
# on or before the start time. Remove these!
pm.remove_invalid_notes()
def adjust_events(event_getter):
"""This function calls event_getter with each instrument as the
sole argument and adjusts the events which are returned."""
# Sort the events by time
for instrument in pm.instruments:
event_getter(instrument).sort(key=lambda e: e.time)
# Correct the events by interpolating
event_times = np.array(
[
event.time
for instrument in pm.instruments
for event in event_getter(instrument)
]
)
adjusted_event_times = np.interp(event_times, original_times, new_times)
for n, event in enumerate(
[
event
for instrument in pm.instruments
for event in event_getter(instrument)
]
):
event.time = adjusted_event_times[n]
for instrument in pm.instruments:
# We want to keep only the final event which has time ==
# new_times[0]
valid_events = [
event
for event in event_getter(instrument)
if event.time == new_times[0]
]
if valid_events:
valid_events = valid_events[-1:]
# Otherwise only keep events within the new set of times
valid_events.extend(
event
for event in event_getter(instrument)
if event.time > new_times[0] and event.time < new_times[-1]
)
event_getter(instrument)[:] = valid_events
# Correct pitch bends and control changes
adjust_events(lambda i: i.pitch_bends)
adjust_events(lambda i: i.control_changes)
return pm
def get_features_from_audio(audio, tuning_offset, visualize=False):
f_pitch = audio_to_pitch_features(
f_audio=audio,
Fs=Fs,
tuning_offset=tuning_offset,
feature_rate=feature_rate,
verbose=visualize,
)
f_chroma = pitch_to_chroma(f_pitch=f_pitch)
f_chroma_quantized = quantize_chroma(f_chroma=f_chroma)
f_pitch_onset = audio_to_pitch_onset_features(
f_audio=audio, Fs=Fs, tuning_offset=tuning_offset, verbose=visualize
)
f_DLNCO = pitch_onset_features_to_DLNCO(
f_peaks=f_pitch_onset,
feature_rate=feature_rate,
feature_sequence_length=f_chroma_quantized.shape[1],
visualize=visualize,
)
return f_chroma_quantized, f_DLNCO
def main(samples, dry_run):
import multiprocessing
from joblib import Parallel, delayed
Parallel(n_jobs=multiprocessing.cpu_count() // 2)(
delayed(save_delayed_song)(sample=sample, dry_run=dry_run)
for sample in tqdm(samples)
)
if __name__ == "__main__":
import argparse
parser = argparse.ArgumentParser(description="piano cover downloader")
parser.add_argument(
"data_dir",
type=str,
default=None,
help="""directory contains {id}/{song_filename.wav}
""",
)
parser.add_argument(
"--dry_run", default=False, action="store_true", help="whether dry_run"
)
args = parser.parse_args()
def getfiles():
meta_files = sorted(glob.glob(args.data_dir + "/*.yaml"))
print("meta ", len(meta_files))
samples = list()
for meta_file in tqdm(meta_files):
m = MidiAudioPair(meta_file, auto_remove_no_song=True)
if m.error_code != MidiAudioPair.NO_SONG:
aux_txt = os.path.join(
m.audio_dir,
m.yaml.piano.ytid,
f"{m.yaml.piano.title[:50]}___{m.yaml.song.title[:50]}.txt",
)
with open(aux_txt, "w") as f:
f.write(".")
samples.append(m)
print(f"files available {len(samples)}")
return samples
samples = getfiles()
main(samples=samples, dry_run=args.dry_run)
|