Spaces:
Sleeping
Sleeping
File size: 1,811 Bytes
36ff57a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 |
import tensorflow as tf
inception_net = tf.keras.applications.M
import requests
respuesta = requests.get("https://git.io/JJkYN")
etiquetas = respuesta.text.split("\n")
# Obteniendo las labels de "https://git.io/JJkYN"
def clasifica_imagen(inp):
inp = inp.reshape((-1,224,224,3))
inp = tf.keras.applications.mobilenet_v2.preprocess_input(inp)
prediction = inception_net.predict(inp).flatten()
confidences = {etiquetas[i]: float(prediction[i]) for i in range(1000)}
return confidences
import gradio as gr
from transformers import pipeline
trans = pipeline("automatic-speech-recognition", model="facebook/wav2vec2-large-xlsr-53-spanish")
clasificador = pipeline("text-classification", model="pysentimiento/robertuito-sentiment-analysis")
def audio_a_text(audio):
text = trans(audio)["text"]
return text
def texto_a_sentimiento(text):
return clasificador(text)[0]["label"]
demo = gr.Blocks()
with demo:
gr.Markdown("Este es el segundo demo con Blocks")
with gr.Tabs():
with gr.TabItem("Transcribe audio en español"):
with gr.Row():
audio = gr.Audio(source="microphone", type="filepath")
transcripcion = gr.Textbox()
b1 = gr.Button("Transcribe porfa")
with gr.TabItem("Análisis de sentimiento en español"):
with gr.Row():
texto = gr.Textbox()
label = gr.Label()
b2 = gr.Button("sentimiento porfa")
with gr.TabItem("Clasificacion de imagenes"):
with gr.Row():
imagen = gr.Image(shape=(224,224))
label1 = gr.Label(num_top_classes=3)
b3 = gr.Button("clasifica")
b1.click(audio_a_text, inputs = audio, outputs = transcripcion)
b2.click(texto_a_sentimiento, inputs = texto, outputs = label)
b3.click(clasifica_imagen, inputs = imagen, outputs=label1)
demo.launch() |