import gradio as gr from huggingface_hub import hf_hub_download from PIL import Image import torch import pytesseract from transformers import AutoImageProcessor, AutoModelForObjectDetection # Load the processor and model for table structure recognition processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition") model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition") # Check if GPU is available and use it; otherwise, use CPU device = torch.device("cuda" if torch.cuda.is_available() else "cpu") model.to(device) # Define the inference and OCR function def predict(image): # Preprocess the input image inputs = processor(images=image, return_tensors="pt").to(device) # Perform object detection using the model with torch.no_grad(): outputs = model(**inputs) # Extract bounding boxes and filter for columns predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions # Prepare OCR results ocr_results = [] image_width, image_height = image.size # Get original image dimensions # Iterate over detected boxes and perform OCR on columns for box in predicted_boxes: # Unpack the normalized bounding box (x_min, y_min, x_max, y_max) x_min, y_min, x_max, y_max = box # Calculate width and height (denormalize) width = x_max - x_min height = y_max - y_min # Filter for columns based on aspect ratio (height > width) if height / width > 2: # A threshold for vertical aspect ratio (adjust if needed) # Convert normalized coordinates to pixel values left = int(x_min * image_width) top = int(y_min * image_height) right = int(x_max * image_width) bottom = int(y_max * image_height) # Crop the image to the bounding box area cropped_image = image.crop((left, top, right, bottom)) # Perform OCR on the cropped image ocr_text = pytesseract.image_to_string(cropped_image) # Append OCR result for this box ocr_results.append({ "box": [left, top, right, bottom], "text": ocr_text }) # Return OCR results return {"ocr_results": ocr_results} # Set up the Gradio interface interface = gr.Interface( fn=predict, # The function that gets called when an image is uploaded inputs=gr.Image(type="pil"), # Image input (as PIL image) outputs="json", # Outputting a JSON with the OCR results ) # Launch the Gradio app interface.launch()