remove gr.load
Browse files- .gradio/flagged/dataset1.csv +2 -0
- .gradio/flagged/dataset2.csv +2 -0
- app.py +1 -3
.gradio/flagged/dataset1.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
name,output,timestamp
|
2 |
+
,,2024-12-20 23:48:03.557001
|
.gradio/flagged/dataset2.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
Type name here:,output,timestamp
|
2 |
+
raaa,Helloraaa,2024-12-20 23:56:47.403516
|
app.py
CHANGED
@@ -3,12 +3,10 @@ from huggingface_hub import hf_hub_download
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
6 |
-
|
7 |
-
gr.load("models/microsoft/table-transformer-structure-recognition").launch()
|
8 |
# Load the processor and model for table structure recognition
|
9 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
10 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
11 |
-
|
12 |
# Define the inference function
|
13 |
def predict(image):
|
14 |
# Preprocess the input image
|
|
|
3 |
from PIL import Image
|
4 |
import torch
|
5 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
6 |
+
#gr.load("models/microsoft/table-transformer-structure-recognition").launch()
|
|
|
7 |
# Load the processor and model for table structure recognition
|
8 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
9 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
|
|
10 |
# Define the inference function
|
11 |
def predict(image):
|
12 |
# Preprocess the input image
|