Reverted
Browse files
app.py
CHANGED
@@ -1,9 +1,10 @@
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
-
from PIL import Image
|
4 |
import torch
|
5 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
6 |
|
|
|
7 |
# Load the processor and model for table structure recognition
|
8 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
9 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
@@ -20,34 +21,16 @@ def predict(image):
|
|
20 |
# Extract bounding boxes and class labels
|
21 |
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
|
22 |
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
|
23 |
-
|
24 |
-
#
|
25 |
-
|
26 |
-
width, height = image.size
|
27 |
-
|
28 |
-
# Loop over all detected boxes and draw them on the image
|
29 |
-
for box in predicted_boxes:
|
30 |
-
# Box coordinates are normalized, so multiply by image dimensions
|
31 |
-
x0, y0, x1, y1 = box
|
32 |
-
|
33 |
-
# Ensure that y0 < y1 and x0 < x1
|
34 |
-
if x1 < x0:
|
35 |
-
x0, x1 = x1, x0
|
36 |
-
if y1 < y0:
|
37 |
-
y0, y1 = y1, y0
|
38 |
-
|
39 |
-
# Draw the rectangle
|
40 |
-
draw.rectangle([x0 * width, y0 * height, x1 * width, y1 * height], outline="red", width=3)
|
41 |
-
|
42 |
-
# Return the image with bounding boxes drawn
|
43 |
-
return image
|
44 |
|
45 |
# Set up the Gradio interface
|
46 |
interface = gr.Interface(
|
47 |
fn=predict, # The function that gets called when an image is uploaded
|
48 |
inputs=gr.Image(type="pil"), # Image input (as PIL image)
|
49 |
-
outputs=
|
50 |
)
|
51 |
|
52 |
# Launch the Gradio app
|
53 |
-
interface.launch()
|
|
|
1 |
import gradio as gr
|
2 |
from huggingface_hub import hf_hub_download
|
3 |
+
from PIL import Image
|
4 |
import torch
|
5 |
from transformers import AutoImageProcessor, AutoModelForObjectDetection
|
6 |
|
7 |
+
gr.load("models/microsoft/table-transformer-structure-recognition").launch()
|
8 |
# Load the processor and model for table structure recognition
|
9 |
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
|
10 |
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
|
|
|
21 |
# Extract bounding boxes and class labels
|
22 |
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
|
23 |
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
|
24 |
+
|
25 |
+
# Return the bounding boxes for display
|
26 |
+
return {"boxes": predicted_boxes.tolist(), "classes": predicted_classes.tolist()}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
27 |
|
28 |
# Set up the Gradio interface
|
29 |
interface = gr.Interface(
|
30 |
fn=predict, # The function that gets called when an image is uploaded
|
31 |
inputs=gr.Image(type="pil"), # Image input (as PIL image)
|
32 |
+
outputs="json", # Outputting a JSON with the boxes and classes
|
33 |
)
|
34 |
|
35 |
# Launch the Gradio app
|
36 |
+
interface.launch()
|