Keemoz0 commited on
Commit
becb4f1
·
1 Parent(s): eac3912

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -6
app.py CHANGED
@@ -1,10 +1,7 @@
1
  import gradio as gr
2
- from huggingface_hub import hf_hub_download
3
- from PIL import Image
4
- import torch
5
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
 
6
 
7
- gr.load("models/microsoft/table-transformer-structure-recognition").launch()
8
  # Load the processor and model for table structure recognition
9
  processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
10
  model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
@@ -21,10 +18,13 @@ def predict(image):
21
  # Extract bounding boxes and class labels
22
  predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
23
  predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
24
- # Return the bounding boxes for display
 
25
  print("Predicted Classes (IDs):", predicted_classes)
26
  print("Bounding Boxes (x1, y1, x2, y2):", predicted_boxes)
27
- return {"boxes": predicted_boxes.tolist(), "classes": predicted_classes.tolist()}
 
 
28
 
29
  # Set up the Gradio interface
30
  interface = gr.Interface(
 
1
  import gradio as gr
 
 
 
2
  from transformers import AutoImageProcessor, AutoModelForObjectDetection
3
+ import torch
4
 
 
5
  # Load the processor and model for table structure recognition
6
  processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
7
  model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
 
18
  # Extract bounding boxes and class labels
19
  predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
20
  predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
21
+
22
+ # Log the relevant information (class IDs and bounding boxes)
23
  print("Predicted Classes (IDs):", predicted_classes)
24
  print("Bounding Boxes (x1, y1, x2, y2):", predicted_boxes)
25
+
26
+ # Return the bounding boxes and class IDs for display in JSON
27
+ return {"predicted_boxes": predicted_boxes.tolist(), "predicted_classes": predicted_classes.tolist()}
28
 
29
  # Set up the Gradio interface
30
  interface = gr.Interface(