Keemoz0 commited on
Commit
8735605
·
1 Parent(s): f58ee97

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +6 -7
app.py CHANGED
@@ -1,7 +1,10 @@
1
  import gradio as gr
2
- from transformers import AutoImageProcessor, AutoModelForObjectDetection
 
3
  import torch
 
4
 
 
5
  # Load the processor and model for table structure recognition
6
  processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
7
  model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
@@ -19,12 +22,8 @@ def predict(image):
19
  predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
20
  predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
21
 
22
- # Filter predictions to only include columns
23
- column_class_id = 1 # Assuming class ID 1 corresponds to columns, adjust if needed
24
- column_boxes = predicted_boxes[predicted_classes == column_class_id]
25
-
26
- # Return the bounding boxes for columns
27
- return {"boxes": column_boxes.tolist(), "classes": ["column"] * len(column_boxes)}
28
 
29
  # Set up the Gradio interface
30
  interface = gr.Interface(
 
1
  import gradio as gr
2
+ from huggingface_hub import hf_hub_download
3
+ from PIL import Image
4
  import torch
5
+ from transformers import AutoImageProcessor, AutoModelForObjectDetection
6
 
7
+ gr.load("models/microsoft/table-transformer-structure-recognition").launch()
8
  # Load the processor and model for table structure recognition
9
  processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
10
  model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
 
22
  predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
23
  predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
24
 
25
+ # Return the bounding boxes for display
26
+ return {"boxes": predicted_boxes.tolist(), "classes": predicted_classes.tolist()}
 
 
 
 
27
 
28
  # Set up the Gradio interface
29
  interface = gr.Interface(