Keemoz0's picture
Show only columns
f58ee97
raw
history blame
1.49 kB
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
# Load the processor and model for table structure recognition
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
# Define the inference function
def predict(image):
# Preprocess the input image
inputs = processor(images=image, return_tensors="pt")
# Perform object detection using the model
with torch.no_grad():
outputs = model(**inputs)
# Extract bounding boxes and class labels
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
predicted_classes = outputs.logits.argmax(-1).cpu().numpy() # Class predictions
# Filter predictions to only include columns
column_class_id = 1 # Assuming class ID 1 corresponds to columns, adjust if needed
column_boxes = predicted_boxes[predicted_classes == column_class_id]
# Return the bounding boxes for columns
return {"boxes": column_boxes.tolist(), "classes": ["column"] * len(column_boxes)}
# Set up the Gradio interface
interface = gr.Interface(
fn=predict, # The function that gets called when an image is uploaded
inputs=gr.Image(type="pil"), # Image input (as PIL image)
outputs="json", # Outputting a JSON with the boxes and classes
)
# Launch the Gradio app
interface.launch()