Keemoz0's picture
Find whats the name,id and classes inside the model
cc7610a
raw
history blame
1.96 kB
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForObjectDetection
import torch
# Load the processor and model for table structure recognition
processor = AutoImageProcessor.from_pretrained("microsoft/table-transformer-structure-recognition")
model = AutoModelForObjectDetection.from_pretrained("microsoft/table-transformer-structure-recognition")
# Define the inference function
def predict(image):
# Preprocess the input image
inputs = processor(images=image, return_tensors="pt")
# Perform object detection using the model
with torch.no_grad():
outputs = model(**inputs)
# Extract bounding boxes and class labels
predicted_boxes = outputs.pred_boxes[0].cpu().numpy() # First image
predicted_class_logits = outputs.logits[0].cpu().numpy() # Class logits for the first image
predicted_classes = predicted_class_logits.argmax(-1) # Get class predictions
class_names = model.config.id2label # Get the class name mapping
# Collect the class IDs and labels along with the bounding boxes
result = []
for idx, class_id in enumerate(predicted_classes):
class_name = class_names[class_id]
result.append({
"class_id": int(class_id),
"class_name": class_name,
"bounding_box": predicted_boxes[idx].tolist() # Convert to list for JSON serialization
})
# Return the bounding boxes and classes
return result
# Set up the Gradio interface
interface = gr.Interface(
fn=predict, # The function that gets called when an image is uploaded
inputs=gr.Image(type="pil"), # Image input (as PIL image)
outputs="json", # Outputting a JSON with the class labels, IDs, and bounding boxes
title="Table Structure Recognition", # Add title for clarity
description="Upload an image and see the detected table columns and their corresponding class IDs.",
)
# Launch the Gradio app
interface.launch()