|
import spaces |
|
import gradio as gr |
|
import numpy as np |
|
import PIL.Image |
|
from PIL import Image |
|
import random |
|
from diffusers import ControlNetModel, StableDiffusionXLPipeline, AutoencoderKL |
|
import cv2 |
|
import torch |
|
import os |
|
import time |
|
import glob |
|
|
|
from diffusers import ( |
|
DDIMScheduler, |
|
DPMSolverMultistepScheduler, |
|
EulerDiscreteScheduler, |
|
EulerAncestralDiscreteScheduler, |
|
HeunDiscreteScheduler, |
|
KDPM2DiscreteScheduler, |
|
KDPM2AncestralDiscreteScheduler, |
|
LMSDiscreteScheduler, |
|
UniPCMultistepScheduler, |
|
) |
|
|
|
TEMP_DIR = "temp_images" |
|
FILE_RETENTION_PERIOD = 3600 |
|
os.makedirs(TEMP_DIR, exist_ok=True) |
|
|
|
def cleanup_old_files(): |
|
"""Delete old temporary files""" |
|
current_time = time.time() |
|
pattern = os.path.join(TEMP_DIR, "output_*.png") |
|
|
|
for file_path in glob.glob(pattern): |
|
try: |
|
file_modified_time = os.path.getmtime(file_path) |
|
if current_time - file_modified_time > FILE_RETENTION_PERIOD: |
|
os.remove(file_path) |
|
except Exception as e: |
|
print(f"Error while cleaning up file {file_path}: {e}") |
|
|
|
device = torch.device("cuda" if torch.cuda.is_available() else "cpu") |
|
|
|
pipe = StableDiffusionXLPipeline.from_single_file( |
|
"https://huggingface.co/SeaArtLab/SeaArt-Furry-XL-1.0/blob/main/furry-xl-4.0.safetensors", |
|
use_safetensors=True, |
|
torch_dtype=torch.float16, |
|
) |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
pipe.to(device) |
|
|
|
MAX_SEED = np.iinfo(np.int32).max |
|
MAX_IMAGE_SIZE = 1216 |
|
|
|
@spaces.GPU |
|
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name): |
|
|
|
cleanup_old_files() |
|
|
|
if sampler_name == "DDIM": |
|
pipe.scheduler = DDIMScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "DPMSolverMultistep": |
|
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "Euler": |
|
pipe.scheduler = EulerDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "EulerAncestral": |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "Heun": |
|
pipe.scheduler = HeunDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "KDPM2": |
|
pipe.scheduler = KDPM2DiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "KDPM2Ancestral": |
|
pipe.scheduler = KDPM2AncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "LMS": |
|
pipe.scheduler = LMSDiscreteScheduler.from_config(pipe.scheduler.config) |
|
elif sampler_name == "UniPC": |
|
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) |
|
else: |
|
pipe.scheduler = EulerAncestralDiscreteScheduler.from_config(pipe.scheduler.config) |
|
|
|
if randomize_seed: |
|
seed = random.randint(0, MAX_SEED) |
|
|
|
generator = torch.Generator().manual_seed(seed) |
|
|
|
output_image = pipe( |
|
prompt=prompt, |
|
negative_prompt=negative_prompt, |
|
guidance_scale=guidance_scale, |
|
num_inference_steps=num_inference_steps, |
|
width=width, |
|
height=height, |
|
generator=generator |
|
).images[0] |
|
|
|
if output_image.mode != 'RGB': |
|
output_image = output_image.convert('RGB') |
|
|
|
timestamp = int(time.time()) |
|
temp_filename = os.path.join(TEMP_DIR, f"output_{timestamp}.png") |
|
output_image.save(temp_filename) |
|
|
|
return temp_filename |
|
|
|
css = """ |
|
#col-container { |
|
margin: 0 auto; |
|
max-width: 520px; |
|
} |
|
""" |
|
|
|
with gr.Blocks(css=css) as demo: |
|
with gr.Column(elem_id="col-container"): |
|
gr.Markdown(""" |
|
T2I FurryStyle BetaVer""") |
|
|
|
with gr.Row(): |
|
prompt = gr.Text( |
|
label="Prompt", |
|
show_label=False, |
|
max_lines=1, |
|
placeholder="Enter your prompt", |
|
container=False, |
|
) |
|
run_button = gr.Button("Run", scale=0) |
|
|
|
result = gr.Image( |
|
label="Result", |
|
show_label=False, |
|
type="filepath", |
|
elem_id="output_image" |
|
) |
|
|
|
with gr.Accordion("Advanced Settings", open=False): |
|
negative_prompt = gr.Text( |
|
label="Negative prompt", |
|
max_lines=1, |
|
placeholder="Enter a negative prompt", |
|
value="nsfw, (low quality, worst quality:1.2), very displeasing, 3d, watermark, signature, ugly, poorly drawn" |
|
) |
|
|
|
seed = gr.Slider( |
|
label="Seed", |
|
minimum=0, |
|
maximum=MAX_SEED, |
|
step=1, |
|
value=0, |
|
) |
|
|
|
sampler_name = gr.Dropdown( |
|
label="Sampler", |
|
choices=["DDIM", "DPMSolverMultistep", "Euler", "EulerAncestral", "Heun", "KDPM2", "KDPM2Ancestral", "LMS", "UniPC"], |
|
value="EulerAncestral", |
|
) |
|
|
|
randomize_seed = gr.Checkbox(label="Randomize seed", value=True) |
|
|
|
with gr.Row(): |
|
width = gr.Slider( |
|
label="Width", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
height = gr.Slider( |
|
label="Height", |
|
minimum=256, |
|
maximum=MAX_IMAGE_SIZE, |
|
step=32, |
|
value=1024, |
|
) |
|
|
|
with gr.Row(): |
|
guidance_scale = gr.Slider( |
|
label="Guidance scale", |
|
minimum=0.0, |
|
maximum=20.0, |
|
step=0.1, |
|
value=4, |
|
) |
|
|
|
num_inference_steps = gr.Slider( |
|
label="Number of inference steps", |
|
minimum=1, |
|
maximum=28, |
|
step=1, |
|
value=28, |
|
) |
|
|
|
run_button.click( |
|
fn=infer, |
|
inputs=[prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps, sampler_name], |
|
outputs=[result] |
|
) |
|
|
|
cleanup_old_files() |
|
|
|
demo.queue().launch() |