Spaces:
Sleeping
Sleeping
File size: 9,208 Bytes
09b47fc |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
import math
import torch
import torch.nn as nn
import monotonic_align
from models.text_encoder import TextEncoder
from models.flow_matching import CFMDecoder
from models.reference_encoder import MelStyleEncoder
from models.duration_predictor import DurationPredictor, duration_loss
def sequence_mask(length: torch.Tensor, max_length: int = None) -> torch.Tensor:
if max_length is None:
max_length = length.max()
x = torch.arange(max_length, dtype=length.dtype, device=length.device)
return x.unsqueeze(0) < length.unsqueeze(1)
def convert_pad_shape(pad_shape):
inverted_shape = pad_shape[::-1]
pad_shape = [item for sublist in inverted_shape for item in sublist]
return pad_shape
def generate_path(duration, mask):
device = duration.device
b, t_x, t_y = mask.shape
cum_duration = torch.cumsum(duration, 1)
path = torch.zeros(b, t_x, t_y, dtype=mask.dtype).to(device=device)
cum_duration_flat = cum_duration.view(b * t_x)
path = sequence_mask(cum_duration_flat, t_y).to(mask.dtype)
path = path.view(b, t_x, t_y)
path = path - torch.nn.functional.pad(path, convert_pad_shape([[0, 0], [1, 0], [0, 0]]))[:, :-1]
path = path * mask
return path
# modified from https://github.com/shivammehta25/Matcha-TTS/blob/main/matcha/models/matcha_tts.py
class StableTTS(nn.Module):
def __init__(self, n_vocab, mel_channels, hidden_channels, filter_channels, n_heads, n_enc_layers, n_dec_layers, kernel_size, p_dropout, gin_channels):
super().__init__()
self.n_vocab = n_vocab
self.mel_channels = mel_channels
self.encoder = TextEncoder(n_vocab, mel_channels, hidden_channels, filter_channels, n_heads, n_enc_layers, kernel_size, p_dropout, gin_channels)
self.ref_encoder = MelStyleEncoder(mel_channels, style_vector_dim=gin_channels, style_kernel_size=3)
self.dp = DurationPredictor(hidden_channels, filter_channels, kernel_size, p_dropout, gin_channels)
self.decoder = CFMDecoder(mel_channels + mel_channels, mel_channels, filter_channels, n_heads, n_dec_layers, kernel_size, p_dropout, gin_channels)
@torch.inference_mode()
def synthesise(self, x, x_lengths, n_timesteps, temperature=1.0, y=None, length_scale=1.0):
"""
Generates mel-spectrogram from text. Returns:
1. encoder outputs
2. decoder outputs
3. generated alignment
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
shape: (batch_size, max_text_length)
x_lengths (torch.Tensor): lengths of texts in batch.
shape: (batch_size,)
n_timesteps (int): number of steps to use for reverse diffusion in decoder.
temperature (float, optional): controls variance of terminal distribution.
y (torch.Tensor): mel spectrogram of reference audio
shape: (batch_size, mel_channels, time)
length_scale (float, optional): controls speech pace.
Increase value to slow down generated speech and vice versa.
Returns:
dict: {
"encoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
# Average mel spectrogram generated by the encoder
"decoder_outputs": torch.Tensor, shape: (batch_size, n_feats, max_mel_length),
# Refined mel spectrogram improved by the CFM
"attn": torch.Tensor, shape: (batch_size, max_text_length, max_mel_length),
# Alignment map between text and mel spectrogram
"""
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
c = self.ref_encoder(y, None)
x, mu_x, x_mask = self.encoder(x, c, x_lengths)
logw = self.dp(x, x_mask, c)
w = torch.exp(logw) * x_mask
w_ceil = torch.ceil(w) * length_scale
y_lengths = torch.clamp_min(torch.sum(w_ceil, [1, 2]), 1).long()
y_max_length = y_lengths.max()
# Using obtained durations `w` construct alignment map `attn`
y_mask = sequence_mask(y_lengths, y_max_length).unsqueeze(1).to(x_mask.dtype)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
attn = generate_path(w_ceil.squeeze(1), attn_mask.squeeze(1)).unsqueeze(1)
# Align encoded text and get mu_y
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
encoder_outputs = mu_y[:, :, :y_max_length]
# Generate sample tracing the probability flow
decoder_outputs = self.decoder(mu_y, y_mask, n_timesteps, temperature, c)
decoder_outputs = decoder_outputs[:, :, :y_max_length]
return {
"encoder_outputs": encoder_outputs,
"decoder_outputs": decoder_outputs,
"attn": attn[:, :, :y_max_length],
}
def forward(self, x, x_lengths, y, y_lengths):
"""
Computes 3 losses:
1. duration loss: loss between predicted token durations and those extracted by Monotinic Alignment Search (MAS).
2. prior loss: loss between mel-spectrogram and encoder outputs.
3. flow matching loss: loss between mel-spectrogram and decoder outputs.
Args:
x (torch.Tensor): batch of texts, converted to a tensor with phoneme embedding ids.
shape: (batch_size, max_text_length)
x_lengths (torch.Tensor): lengths of texts in batch.
shape: (batch_size,)
y (torch.Tensor): batch of corresponding mel-spectrograms.
shape: (batch_size, n_feats, max_mel_length)
y_lengths (torch.Tensor): lengths of mel-spectrograms in batch.
shape: (batch_size,)
"""
# Get encoder_outputs `mu_x` and log-scaled token durations `logw`
y_mask = sequence_mask(y_lengths, y.size(2)).unsqueeze(1).to(y.dtype)
c = self.ref_encoder(y, y_mask)
x, mu_x, x_mask = self.encoder(x, c, x_lengths)
logw = self.dp(x, x_mask, c)
attn_mask = x_mask.unsqueeze(-1) * y_mask.unsqueeze(2)
# Use MAS to find most likely alignment `attn` between text and mel-spectrogram
# I'm not sure why the MAS code in Matcha TTS and Grad TTS could not align in StableTTS
# so I use the code from https://github.com/p0p4k/pflowtts_pytorch/blob/master/pflow/models/pflow_tts.py and it works
# Welcome everyone to solve this problem QAQ
with torch.no_grad():
# const = -0.5 * math.log(2 * math.pi) * self.n_feats
# const = -0.5 * math.log(2 * math.pi) * self.mel_channels
# factor = -0.5 * torch.ones(mu_x.shape, dtype=mu_x.dtype, device=mu_x.device)
# y_square = torch.matmul(factor.transpose(1, 2), y**2)
# y_mu_double = torch.matmul(2.0 * (factor * mu_x).transpose(1, 2), y)
# mu_square = torch.sum(factor * (mu_x**2), 1).unsqueeze(-1)
# log_prior = y_square - y_mu_double + mu_square + const
s_p_sq_r = torch.ones_like(mu_x) # [b, d, t]
# s_p_sq_r = torch.exp(-2 * logx)
neg_cent1 = torch.sum(
-0.5 * math.log(2 * math.pi)- torch.zeros_like(mu_x), [1], keepdim=True
)
# neg_cent1 = torch.sum(
# -0.5 * math.log(2 * math.pi) - logx, [1], keepdim=True
# ) # [b, 1, t_s]
neg_cent2 = torch.einsum("bdt, bds -> bts", -0.5 * (y**2), s_p_sq_r)
neg_cent3 = torch.einsum("bdt, bds -> bts", y, (mu_x * s_p_sq_r))
neg_cent4 = torch.sum(
-0.5 * (mu_x**2) * s_p_sq_r, [1], keepdim=True
)
neg_cent = neg_cent1 + neg_cent2 + neg_cent3 + neg_cent4
attn_mask = torch.unsqueeze(x_mask, 2) * torch.unsqueeze(y_mask, -1)
attn = (
monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1)).unsqueeze(1).detach()
)
# attn = monotonic_align.maximum_path(neg_cent, attn_mask.squeeze(1))
# attn = attn.detach()
# Compute loss between predicted log-scaled durations and those obtained from MAS
# refered to as prior loss in the paper
logw_ = torch.log(1e-8 + attn.sum(2)) * x_mask
# logw_ = torch.log(1e-8 + torch.sum(attn.unsqueeze(1), -1)) * x_mask
dur_loss = duration_loss(logw, logw_, x_lengths)
# Align encoded text with mel-spectrogram and get mu_y segment
attn = attn.squeeze(1).transpose(1,2)
mu_y = torch.matmul(attn.squeeze(1).transpose(1, 2), mu_x.transpose(1, 2))
mu_y = mu_y.transpose(1, 2)
# Compute loss of the decoder
diff_loss, _ = self.decoder.compute_loss(y, y_mask, mu_y, c)
# diff_loss = torch.tensor([0], device=mu_y.device)
prior_loss = torch.sum(0.5 * ((y - mu_y) ** 2 + math.log(2 * math.pi)) * y_mask)
prior_loss = prior_loss / (torch.sum(y_mask) * self.mel_channels)
return dur_loss, diff_loss, prior_loss, attn |