Spaces:
Runtime error
Runtime error
from typing import List, Tuple | |
import torch | |
from torch import nn | |
from torch import Tensor | |
from torch.nn import Conv2d | |
from torch.nn.utils import weight_norm | |
from torchaudio.transforms import Spectrogram | |
class MultiPeriodDiscriminator(nn.Module): | |
def __init__(self, periods: Tuple[int, ...] = (2, 3, 5, 7, 11)): | |
super().__init__() | |
self.discriminators = nn.ModuleList([DiscriminatorP(period=p) for p in periods]) | |
def forward(self, y: Tensor, y_hat: Tensor): | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(y) | |
y_d_g, fmap_g = d(y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorP(nn.Module): | |
def __init__( | |
self, | |
period: int, | |
in_channels: int = 1, | |
kernel_size: int = 5, | |
stride: int = 3, | |
lrelu_slope: float = 0.1, | |
): | |
super().__init__() | |
self.period = period | |
self.convs = nn.ModuleList( | |
[ | |
weight_norm(Conv2d(in_channels, 32, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(32, 128, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(128, 512, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(512, 1024, (kernel_size, 1), (stride, 1), padding=(kernel_size // 2, 0))), | |
weight_norm(Conv2d(1024, 1024, (kernel_size, 1), (1, 1), padding=(kernel_size // 2, 0))), | |
] | |
) | |
self.conv_post = weight_norm(Conv2d(1024, 1, (3, 1), 1, padding=(1, 0))) | |
self.lrelu_slope = lrelu_slope | |
def forward(self, x: Tensor) -> Tuple[Tensor, List[Tensor]]: | |
fmap = [] | |
# 1d to 2d | |
b, c, t = x.shape | |
if t % self.period != 0: # pad first | |
n_pad = self.period - (t % self.period) | |
x = torch.nn.functional.pad(x, (0, n_pad), "reflect") | |
t = t + n_pad | |
x = x.view(b, c, t // self.period, self.period) | |
for i, l in enumerate(self.convs): | |
x = l(x) | |
x = torch.nn.functional.leaky_relu(x, self.lrelu_slope) | |
if i > 0: | |
fmap.append(x) | |
x = self.conv_post(x) | |
fmap.append(x) | |
x = torch.flatten(x, 1, -1) | |
return x, fmap | |
class MultiResolutionDiscriminator(nn.Module): | |
def __init__( | |
self, | |
fft_sizes: Tuple[int, ...] = (2048, 1024, 512), | |
): | |
""" | |
Multi-Resolution Discriminator module adapted from https://github.com/descriptinc/descript-audio-codec. | |
Args: | |
fft_sizes (tuple[int]): Tuple of window lengths for FFT. Defaults to (2048, 1024, 512). | |
""" | |
super().__init__() | |
self.discriminators = nn.ModuleList( | |
[DiscriminatorR(window_length=w) for w in fft_sizes] | |
) | |
def forward(self, y: Tensor, y_hat: Tensor) -> Tuple[List[Tensor], List[Tensor], List[List[Tensor]], List[List[Tensor]]]: | |
y_d_rs = [] | |
y_d_gs = [] | |
fmap_rs = [] | |
fmap_gs = [] | |
for d in self.discriminators: | |
y_d_r, fmap_r = d(x=y) | |
y_d_g, fmap_g = d(x=y_hat) | |
y_d_rs.append(y_d_r) | |
fmap_rs.append(fmap_r) | |
y_d_gs.append(y_d_g) | |
fmap_gs.append(fmap_g) | |
return y_d_rs, y_d_gs, fmap_rs, fmap_gs | |
class DiscriminatorR(nn.Module): | |
def __init__( | |
self, | |
window_length: int, | |
channels: int = 32, | |
hop_factor: float = 0.25, | |
bands: Tuple[Tuple[float, float], ...] = ((0.0, 0.1), (0.1, 0.25), (0.25, 0.5), (0.5, 0.75), (0.75, 1.0)), | |
): | |
super().__init__() | |
self.window_length = window_length | |
self.hop_factor = hop_factor | |
self.spec_fn = Spectrogram( | |
n_fft=window_length, hop_length=int(window_length * hop_factor), win_length=window_length, power=None | |
) | |
n_fft = window_length // 2 + 1 | |
bands = [(int(b[0] * n_fft), int(b[1] * n_fft)) for b in bands] | |
self.bands = bands | |
convs = lambda: nn.ModuleList( | |
[ | |
weight_norm(nn.Conv2d(2, channels, (3, 9), (1, 1), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 9), (1, 2), padding=(1, 4))), | |
weight_norm(nn.Conv2d(channels, channels, (3, 3), (1, 1), padding=(1, 1))), | |
] | |
) | |
self.band_convs = nn.ModuleList([convs() for _ in range(len(self.bands))]) | |
self.conv_post = weight_norm(nn.Conv2d(channels, 1, (3, 3), (1, 1), padding=(1, 1))) | |
def spectrogram(self, x): | |
x = x.squeeze(1) | |
# Remove DC offset | |
x = x - x.mean(dim=-1, keepdims=True) | |
# Peak normalize the volume of input audio | |
x = 0.8 * x / (x.abs().max(dim=-1, keepdim=True)[0] + 1e-9) | |
x = self.spec_fn(x) | |
x = torch.view_as_real(x) | |
x = x.permute(0, 3, 2, 1) # b f t c -> b c t f | |
# Split into bands | |
x_bands = [x[..., b[0] : b[1]] for b in self.bands] | |
return x_bands | |
def forward(self, x: Tensor): | |
x_bands = self.spectrogram(x) | |
fmap = [] | |
x = [] | |
for band, stack in zip(x_bands, self.band_convs): | |
for i, layer in enumerate(stack): | |
band = layer(band) | |
band = torch.nn.functional.leaky_relu(band, 0.1) | |
if i > 0: | |
fmap.append(band) | |
x.append(band) | |
x = torch.cat(x, dim=-1) | |
x = self.conv_post(x) | |
fmap.append(x) | |
return x, fmap |