Spaces:
Runtime error
Runtime error
from typing import Optional | |
import torch | |
from torch import nn | |
from .module import ConvNeXtBlock | |
class VocosBackbone(nn.Module): | |
""" | |
Vocos backbone module built with ConvNeXt blocks. Supports additional conditioning with Adaptive Layer Normalization | |
Args: | |
input_channels (int): Number of input features channels. | |
dim (int): Hidden dimension of the model. | |
intermediate_dim (int): Intermediate dimension used in ConvNeXtBlock. | |
num_layers (int): Number of ConvNeXtBlock layers. | |
layer_scale_init_value (float, optional): Initial value for layer scaling. Defaults to `1 / num_layers`. | |
""" | |
def __init__( | |
self, | |
input_channels: int, | |
dim: int, | |
intermediate_dim: int, | |
num_layers: int, | |
layer_scale_init_value: Optional[float] = None, | |
): | |
super().__init__() | |
self.input_channels = input_channels | |
self.embed = nn.Conv1d(input_channels, dim, kernel_size=7, padding=3) | |
self.norm = nn.LayerNorm(dim, eps=1e-6) | |
layer_scale_init_value = layer_scale_init_value or 1 / num_layers | |
self.convnext = nn.ModuleList( | |
[ | |
ConvNeXtBlock( | |
dim=dim, | |
intermediate_dim=intermediate_dim, | |
layer_scale_init_value=layer_scale_init_value, | |
) | |
for _ in range(num_layers) | |
] | |
) | |
self.final_layer_norm = nn.LayerNorm(dim, eps=1e-6) | |
self.apply(self._init_weights) | |
def _init_weights(self, m): | |
if isinstance(m, (nn.Conv1d, nn.Linear)): | |
nn.init.trunc_normal_(m.weight, std=0.02) | |
nn.init.constant_(m.bias, 0) | |
def forward(self, x: torch.Tensor) -> torch.Tensor: | |
x = self.embed(x) | |
x = self.norm(x.transpose(1, 2)).transpose(1, 2) | |
for conv_block in self.convnext: | |
x = conv_block(x) | |
x = self.final_layer_norm(x.transpose(1, 2)) | |
return x |