File size: 11,992 Bytes
d358e26
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
# modified from transformers.optimization
import math
from functools import partial

import torch
from torch import nn
from torch.optim import Optimizer
from torch.optim.lr_scheduler import LambdaLR, ReduceLROnPlateau

def _get_constant_lambda(_=None):
    return 1


def get_constant_schedule(optimizer: Optimizer, last_epoch: int = -1):
    """
    Create a schedule with a constant learning rate, using the learning rate set in optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    return LambdaLR(optimizer, _get_constant_lambda, last_epoch=last_epoch)


def get_reduce_on_plateau_schedule(optimizer: Optimizer, **kwargs):
    """
    Create a schedule with a constant learning rate that decreases when a metric has stopped improving.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        kwargs (`dict`, *optional*):
            Extra parameters to be passed to the scheduler. See `torch.optim.lr_scheduler.ReduceLROnPlateau`
            for possible parameters.

    Return:
        `torch.optim.lr_scheduler.ReduceLROnPlateau` with the appropriate schedule.
    """

    return ReduceLROnPlateau(optimizer, **kwargs)


def _get_constant_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1.0, num_warmup_steps))
    return 1.0


def get_constant_schedule_with_warmup(optimizer: Optimizer, num_warmup_steps: int, last_epoch: int = -1):
    """
    Create a schedule with a constant learning rate preceded by a warmup period during which the learning rate
    increases linearly between 0 and the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(_get_constant_schedule_with_warmup_lr_lambda, num_warmup_steps=num_warmup_steps)
    return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)


def _get_linear_schedule_with_warmup_lr_lambda(current_step: int, *, num_warmup_steps: int, num_training_steps: int):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    return max(0.0, float(num_training_steps - current_step) / float(max(1, num_training_steps - num_warmup_steps)))


def get_linear_schedule_with_warmup(optimizer, num_warmup_steps, num_training_steps, last_epoch=-1):
    """
    Create a schedule with a learning rate that decreases linearly from the initial lr set in the optimizer to 0, after
    a warmup period during which it increases linearly from 0 to the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(
        _get_linear_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_cosine_schedule_with_warmup_lr_lambda(
    current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: float
):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * float(num_cycles) * 2.0 * progress)))


def get_cosine_schedule_with_warmup(
    optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: float = 0.5, last_epoch: int = -1
):
    """
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, after a warmup period during which it increases linearly between 0 and the
    initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        num_cycles (`float`, *optional*, defaults to 0.5):
            The number of waves in the cosine schedule (the defaults is to just decrease from the max value to 0
            following a half-cosine).
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(
        _get_cosine_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_cycles=num_cycles,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda(
    current_step: int, *, num_warmup_steps: int, num_training_steps: int, num_cycles: int
):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    progress = float(current_step - num_warmup_steps) / float(max(1, num_training_steps - num_warmup_steps))
    if progress >= 1.0:
        return 0.0
    return max(0.0, 0.5 * (1.0 + math.cos(math.pi * ((float(num_cycles) * progress) % 1.0))))


def get_cosine_with_hard_restarts_schedule_with_warmup(
    optimizer: Optimizer, num_warmup_steps: int, num_training_steps: int, num_cycles: int = 1, last_epoch: int = -1
):
    """
    Create a schedule with a learning rate that decreases following the values of the cosine function between the
    initial lr set in the optimizer to 0, with several hard restarts, after a warmup period during which it increases
    linearly between 0 and the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        num_cycles (`int`, *optional*, defaults to 1):
            The number of hard restarts to use.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """

    lr_lambda = partial(
        _get_cosine_with_hard_restarts_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        num_cycles=num_cycles,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_polynomial_decay_schedule_with_warmup_lr_lambda(
    current_step: int,
    *,
    num_warmup_steps: int,
    num_training_steps: int,
    lr_end: float,
    power: float,
    lr_init: int,
):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    elif current_step > num_training_steps:
        return lr_end / lr_init  # as LambdaLR multiplies by lr_init
    else:
        lr_range = lr_init - lr_end
        decay_steps = num_training_steps - num_warmup_steps
        pct_remaining = 1 - (current_step - num_warmup_steps) / decay_steps
        decay = lr_range * pct_remaining**power + lr_end
        return decay / lr_init  # as LambdaLR multiplies by lr_init


def get_polynomial_decay_schedule_with_warmup(
    optimizer, num_warmup_steps, num_training_steps, lr_end=1e-7, power=1.0, last_epoch=-1
):
    """
    Create a schedule with a learning rate that decreases as a polynomial decay from the initial lr set in the
    optimizer to end lr defined by *lr_end*, after a warmup period during which it increases linearly from 0 to the
    initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        num_training_steps (`int`):
            The total number of training steps.
        lr_end (`float`, *optional*, defaults to 1e-7):
            The end LR.
        power (`float`, *optional*, defaults to 1.0):
            Power factor.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Note: *power* defaults to 1.0 as in the fairseq implementation, which in turn is based on the original BERT
    implementation at
    https://github.com/google-research/bert/blob/f39e881b169b9d53bea03d2d341b31707a6c052b/optimization.py#L37

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.

    """

    lr_init = optimizer.defaults["lr"]
    if not (lr_init > lr_end):
        raise ValueError(f"lr_end ({lr_end}) must be be smaller than initial lr ({lr_init})")

    lr_lambda = partial(
        _get_polynomial_decay_schedule_with_warmup_lr_lambda,
        num_warmup_steps=num_warmup_steps,
        num_training_steps=num_training_steps,
        lr_end=lr_end,
        power=power,
        lr_init=lr_init,
    )
    return LambdaLR(optimizer, lr_lambda, last_epoch)


def _get_inverse_sqrt_schedule_lr_lambda(current_step: int, *, num_warmup_steps: int, timescale: int = None):
    if current_step < num_warmup_steps:
        return float(current_step) / float(max(1, num_warmup_steps))
    shift = timescale - num_warmup_steps
    decay = 1.0 / math.sqrt((current_step + shift) / timescale)
    return decay


def get_inverse_sqrt_schedule(
    optimizer: Optimizer, num_warmup_steps: int, timescale: int = None, last_epoch: int = -1
):
    """
    Create a schedule with an inverse square-root learning rate, from the initial lr set in the optimizer, after a
    warmup period which increases lr linearly from 0 to the initial lr set in the optimizer.

    Args:
        optimizer ([`~torch.optim.Optimizer`]):
            The optimizer for which to schedule the learning rate.
        num_warmup_steps (`int`):
            The number of steps for the warmup phase.
        timescale (`int`, *optional*, defaults to `num_warmup_steps`):
            Time scale.
        last_epoch (`int`, *optional*, defaults to -1):
            The index of the last epoch when resuming training.

    Return:
        `torch.optim.lr_scheduler.LambdaLR` with the appropriate schedule.
    """
    # Note: this implementation is adapted from
    # https://github.com/google-research/big_vision/blob/f071ce68852d56099437004fd70057597a95f6ef/big_vision/utils.py#L930

    if timescale is None:
        timescale = num_warmup_steps

    lr_lambda = partial(_get_inverse_sqrt_schedule_lr_lambda, num_warmup_steps=num_warmup_steps, timescale=timescale)
    return LambdaLR(optimizer, lr_lambda, last_epoch=last_epoch)