Spaces:
Runtime error
Runtime error
File size: 8,658 Bytes
d358e26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 |
import random
import re
import six
from six.moves import zip, xrange
from .lang_detect_exception import ErrorCode, LangDetectException
from .language import Language
from .utils.ngram import NGram
from .utils.unicode_block import unicode_block
class Detector(object):
'''
Detector class is to detect language from specified text.
Its instance is able to be constructed via the factory class DetectorFactory.
After appending a target text to the Detector instance with .append(string),
the detector provides the language detection results for target text via .detect() or .get_probabilities().
.detect() method returns a single language name which has the highest probability.
.get_probabilities() methods returns a list of multiple languages and their probabilities.
The detector has some parameters for language detection.
See set_alpha(double), .set_max_text_length(int) .set_prior_map(dict).
Example:
from langdetect.detector_factory import DetectorFactory
factory = DetectorFactory()
factory.load_profile('/path/to/profile/directory')
def detect(text):
detector = factory.create()
detector.append(text)
return detector.detect()
def detect_langs(text):
detector = factory.create()
detector.append(text)
return detector.get_probabilities()
'''
ALPHA_DEFAULT = 0.5
ALPHA_WIDTH = 0.05
ITERATION_LIMIT = 1000
PROB_THRESHOLD = 0.1
CONV_THRESHOLD = 0.99999
BASE_FREQ = 10000
UNKNOWN_LANG = 'unknown'
URL_RE = re.compile(r'https?://[-_.?&~;+=/#0-9A-Za-z]{1,2076}')
MAIL_RE = re.compile(r'[-_.0-9A-Za-z]{1,64}@[-_0-9A-Za-z]{1,255}[-_.0-9A-Za-z]{1,255}')
def __init__(self, factory):
self.word_lang_prob_map = factory.word_lang_prob_map
self.langlist = factory.langlist
self.seed = factory.seed
self.random = random.Random()
self.text = ''
self.langprob = None
self.alpha = self.ALPHA_DEFAULT
self.n_trial = 7
self.max_text_length = 10000
self.prior_map = None
self.verbose = False
def set_verbose(self):
self.verbose = True
def set_alpha(self, alpha):
self.alpha = alpha
def set_prior_map(self, prior_map):
'''Set prior information about language probabilities.'''
self.prior_map = [0.0] * len(self.langlist)
sump = 0.0
for i in xrange(len(self.prior_map)):
lang = self.langlist[i]
if lang in prior_map:
p = prior_map[lang]
if p < 0:
raise LangDetectException(ErrorCode.InitParamError, 'Prior probability must be non-negative.')
self.prior_map[i] = p
sump += p
if sump <= 0.0:
raise LangDetectException(ErrorCode.InitParamError, 'More one of prior probability must be non-zero.')
for i in xrange(len(self.prior_map)):
self.prior_map[i] /= sump
def set_max_text_length(self, max_text_length):
'''Specify max size of target text to use for language detection.
The default value is 10000(10KB).
'''
self.max_text_length = max_text_length
def append(self, text):
'''Append the target text for language detection.
If the total size of target text exceeds the limit size specified by
Detector.set_max_text_length(int), the rest is cut down.
'''
text = self.URL_RE.sub(' ', text)
text = self.MAIL_RE.sub(' ', text)
text = NGram.normalize_vi(text)
pre = 0
for i in xrange(min(len(text), self.max_text_length)):
ch = text[i]
if ch != ' ' or pre != ' ':
self.text += ch
pre = ch
def cleaning_text(self):
'''Cleaning text to detect
(eliminate URL, e-mail address and Latin sentence if it is not written in Latin alphabet).
'''
latin_count, non_latin_count = 0, 0
for ch in self.text:
if 'A' <= ch <= 'z':
latin_count += 1
elif ch >= six.u('\u0300') and unicode_block(ch) != 'Latin Extended Additional':
non_latin_count += 1
if latin_count * 2 < non_latin_count:
text_without_latin = ''
for ch in self.text:
if ch < 'A' or 'z' < ch:
text_without_latin += ch
self.text = text_without_latin
def detect(self):
'''Detect language of the target text and return the language name
which has the highest probability.
'''
probabilities = self.get_probabilities()
if probabilities:
return probabilities[0].lang
return self.UNKNOWN_LANG
def get_probabilities(self):
if self.langprob is None:
self._detect_block()
return self._sort_probability(self.langprob)
def _detect_block(self):
self.cleaning_text()
ngrams = self._extract_ngrams()
if not ngrams:
raise LangDetectException(ErrorCode.CantDetectError, 'No features in text.')
self.langprob = [0.0] * len(self.langlist)
self.random.seed(self.seed)
for t in xrange(self.n_trial):
prob = self._init_probability()
alpha = self.alpha + self.random.gauss(0.0, 1.0) * self.ALPHA_WIDTH
i = 0
while True:
self._update_lang_prob(prob, self.random.choice(ngrams), alpha)
if i % 5 == 0:
if self._normalize_prob(prob) > self.CONV_THRESHOLD or i >= self.ITERATION_LIMIT:
break
if self.verbose:
six.print_('>', self._sort_probability(prob))
i += 1
for j in xrange(len(self.langprob)):
self.langprob[j] += prob[j] / self.n_trial
if self.verbose:
six.print_('==>', self._sort_probability(prob))
def _init_probability(self):
'''Initialize the map of language probabilities.
If there is the specified prior map, use it as initial map.
'''
if self.prior_map is not None:
return list(self.prior_map)
else:
return [1.0 / len(self.langlist)] * len(self.langlist)
def _extract_ngrams(self):
'''Extract n-grams from target text.'''
RANGE = list(xrange(1, NGram.N_GRAM + 1))
result = []
ngram = NGram()
for ch in self.text:
ngram.add_char(ch)
if ngram.capitalword:
continue
for n in RANGE:
# optimized w = ngram.get(n)
if len(ngram.grams) < n:
break
w = ngram.grams[-n:]
if w and w != ' ' and w in self.word_lang_prob_map:
result.append(w)
return result
def _update_lang_prob(self, prob, word, alpha):
'''Update language probabilities with N-gram string(N=1,2,3).'''
if word is None or word not in self.word_lang_prob_map:
return False
lang_prob_map = self.word_lang_prob_map[word]
if self.verbose:
six.print_('%s(%s): %s' % (word, self._unicode_encode(word), self._word_prob_to_string(lang_prob_map)))
weight = alpha / self.BASE_FREQ
for i in xrange(len(prob)):
prob[i] *= weight + lang_prob_map[i]
return True
def _word_prob_to_string(self, prob):
result = ''
for j in xrange(len(prob)):
p = prob[j]
if p >= 0.00001:
result += ' %s:%.5f' % (self.langlist[j], p)
return result
def _normalize_prob(self, prob):
'''Normalize probabilities and check convergence by the maximun probability.
'''
maxp, sump = 0.0, sum(prob)
for i in xrange(len(prob)):
p = prob[i] / sump
if maxp < p:
maxp = p
prob[i] = p
return maxp
def _sort_probability(self, prob):
result = [Language(lang, p) for (lang, p) in zip(self.langlist, prob) if p > self.PROB_THRESHOLD]
result.sort(reverse=True)
return result
def _unicode_encode(self, word):
buf = ''
for ch in word:
if ch >= six.u('\u0080'):
st = hex(0x10000 + ord(ch))[2:]
while len(st) < 4:
st = '0' + st
buf += r'\u' + st[1:5]
else:
buf += ch
return buf
|