File size: 7,926 Bytes
3dd84f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
from functools import partial
from math import prod
from typing import Callable

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
from torch.nn import Conv1d
from torch.nn.utils.parametrizations import weight_norm
from torch.nn.utils.parametrize import remove_parametrizations
from torch.utils.checkpoint import checkpoint


def init_weights(m, mean=0.0, std=0.01):
    classname = m.__class__.__name__
    if classname.find("Conv") != -1:
        m.weight.data.normal_(mean, std)


def get_padding(kernel_size, dilation=1):
    return (kernel_size * dilation - dilation) // 2


class ResBlock1(torch.nn.Module):
    def __init__(self, channels, kernel_size=3, dilation=(1, 3, 5)):
        super().__init__()

        self.convs1 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[0],
                        padding=get_padding(kernel_size, dilation[0]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[1],
                        padding=get_padding(kernel_size, dilation[1]),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=dilation[2],
                        padding=get_padding(kernel_size, dilation[2]),
                    )
                ),
            ]
        )
        self.convs1.apply(init_weights)

        self.convs2 = nn.ModuleList(
            [
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
                weight_norm(
                    Conv1d(
                        channels,
                        channels,
                        kernel_size,
                        1,
                        dilation=1,
                        padding=get_padding(kernel_size, 1),
                    )
                ),
            ]
        )
        self.convs2.apply(init_weights)

    def forward(self, x):
        for c1, c2 in zip(self.convs1, self.convs2):
            xt = F.silu(x)
            xt = c1(xt)
            xt = F.silu(xt)
            xt = c2(xt)
            x = xt + x
        return x

    def remove_parametrizations(self):
        for conv in self.convs1:
            remove_parametrizations(conv)
        for conv in self.convs2:
            remove_parametrizations(conv)


class ParralelBlock(nn.Module):
    def __init__(
        self,
        channels: int,
        kernel_sizes: tuple[int] = (3, 7, 11),
        dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
    ):
        super().__init__()

        assert len(kernel_sizes) == len(dilation_sizes)

        self.blocks = nn.ModuleList()
        for k, d in zip(kernel_sizes, dilation_sizes):
            self.blocks.append(ResBlock1(channels, k, d))

    def forward(self, x):
        return torch.stack([block(x) for block in self.blocks], dim=0).mean(dim=0)


class HiFiGANGenerator(nn.Module):
    def __init__(
        self,
        *,
        hop_length: int = 512,
        upsample_rates: tuple[int] = (8, 8, 2, 2, 2),
        upsample_kernel_sizes: tuple[int] = (16, 16, 8, 2, 2),
        resblock_kernel_sizes: tuple[int] = (3, 7, 11),
        resblock_dilation_sizes: tuple[tuple[int]] = ((1, 3, 5), (1, 3, 5), (1, 3, 5)),
        num_mels: int = 128,
        upsample_initial_channel: int = 512,
        use_template: bool = True,
        pre_conv_kernel_size: int = 7,
        post_conv_kernel_size: int = 7,
        post_activation: Callable = partial(nn.SiLU, inplace=True),
    ):
        super().__init__()

        assert (
            prod(upsample_rates) == hop_length
        ), f"hop_length must be {prod(upsample_rates)}"

        self.conv_pre = weight_norm(
            nn.Conv1d(
                num_mels,
                upsample_initial_channel,
                pre_conv_kernel_size,
                1,
                padding=get_padding(pre_conv_kernel_size),
            )
        )

        self.num_upsamples = len(upsample_rates)
        self.num_kernels = len(resblock_kernel_sizes)

        self.noise_convs = nn.ModuleList()
        self.use_template = use_template
        self.ups = nn.ModuleList()

        for i, (u, k) in enumerate(zip(upsample_rates, upsample_kernel_sizes)):
            c_cur = upsample_initial_channel // (2 ** (i + 1))
            self.ups.append(
                weight_norm(
                    nn.ConvTranspose1d(
                        upsample_initial_channel // (2**i),
                        upsample_initial_channel // (2 ** (i + 1)),
                        k,
                        u,
                        padding=(k - u) // 2,
                    )
                )
            )

            if not use_template:
                continue

            if i + 1 < len(upsample_rates):
                stride_f0 = np.prod(upsample_rates[i + 1 :])
                self.noise_convs.append(
                    Conv1d(
                        1,
                        c_cur,
                        kernel_size=stride_f0 * 2,
                        stride=stride_f0,
                        padding=stride_f0 // 2,
                    )
                )
            else:
                self.noise_convs.append(Conv1d(1, c_cur, kernel_size=1))

        self.resblocks = nn.ModuleList()
        for i in range(len(self.ups)):
            ch = upsample_initial_channel // (2 ** (i + 1))
            self.resblocks.append(
                ParralelBlock(ch, resblock_kernel_sizes, resblock_dilation_sizes)
            )

        self.activation_post = post_activation()
        self.conv_post = weight_norm(
            nn.Conv1d(
                ch,
                1,
                post_conv_kernel_size,
                1,
                padding=get_padding(post_conv_kernel_size),
            )
        )
        self.ups.apply(init_weights)
        self.conv_post.apply(init_weights)

    def forward(self, x, template=None):
        x = self.conv_pre(x)

        for i in range(self.num_upsamples):
            x = F.silu(x, inplace=True)
            x = self.ups[i](x)

            if self.use_template:
                x = x + self.noise_convs[i](template)

            if self.training and self.checkpointing:
                x = checkpoint(
                    self.resblocks[i],
                    x,
                    use_reentrant=False,
                )
            else:
                x = self.resblocks[i](x)

        x = self.activation_post(x)
        x = self.conv_post(x)
        x = torch.tanh(x)

        return x

    def remove_parametrizations(self):
        for up in self.ups:
            remove_parametrizations(up)
        for block in self.resblocks:
            block.remove_parametrizations()
        remove_parametrizations(self.conv_pre)
        remove_parametrizations(self.conv_post)