File size: 7,699 Bytes
3dd84f8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
import torch
import torch.nn.functional as F
from torch import nn


# DropPath copied from timm library
def drop_path(
    x, drop_prob: float = 0.0, training: bool = False, scale_by_keep: bool = True
):
    """Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).

    This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,
    the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...
    See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted for
    changing the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use
    'survival rate' as the argument.

    """  # noqa: E501

    if drop_prob == 0.0 or not training:
        return x
    keep_prob = 1 - drop_prob
    shape = (x.shape[0],) + (1,) * (
        x.ndim - 1
    )  # work with diff dim tensors, not just 2D ConvNets
    random_tensor = x.new_empty(shape).bernoulli_(keep_prob)
    if keep_prob > 0.0 and scale_by_keep:
        random_tensor.div_(keep_prob)
    return x * random_tensor


class DropPath(nn.Module):
    """Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""  # noqa: E501

    def __init__(self, drop_prob: float = 0.0, scale_by_keep: bool = True):
        super(DropPath, self).__init__()
        self.drop_prob = drop_prob
        self.scale_by_keep = scale_by_keep

    def forward(self, x):
        return drop_path(x, self.drop_prob, self.training, self.scale_by_keep)

    def extra_repr(self):
        return f"drop_prob={round(self.drop_prob,3):0.3f}"


class LayerNorm(nn.Module):
    r"""LayerNorm that supports two data formats: channels_last (default) or channels_first.
    The ordering of the dimensions in the inputs. channels_last corresponds to inputs with
    shape (batch_size, height, width, channels) while channels_first corresponds to inputs
    with shape (batch_size, channels, height, width).
    """  # noqa: E501

    def __init__(self, normalized_shape, eps=1e-6, data_format="channels_last"):
        super().__init__()
        self.weight = nn.Parameter(torch.ones(normalized_shape))
        self.bias = nn.Parameter(torch.zeros(normalized_shape))
        self.eps = eps
        self.data_format = data_format
        if self.data_format not in ["channels_last", "channels_first"]:
            raise NotImplementedError
        self.normalized_shape = (normalized_shape,)

    def forward(self, x):
        if self.data_format == "channels_last":
            return F.layer_norm(
                x, self.normalized_shape, self.weight, self.bias, self.eps
            )
        elif self.data_format == "channels_first":
            u = x.mean(1, keepdim=True)
            s = (x - u).pow(2).mean(1, keepdim=True)
            x = (x - u) / torch.sqrt(s + self.eps)
            x = self.weight[:, None] * x + self.bias[:, None]
            return x


# ConvNeXt Block copied from https://github.com/fishaudio/fish-diffusion/blob/main/fish_diffusion/modules/convnext.py
class ConvNeXtBlock(nn.Module):
    r"""ConvNeXt Block. There are two equivalent implementations:
    (1) DwConv -> LayerNorm (channels_first) -> 1x1 Conv -> GELU -> 1x1 Conv; all in (N, C, H, W)
    (2) DwConv -> Permute to (N, H, W, C); LayerNorm (channels_last) -> Linear -> GELU -> Linear; Permute back
    We use (2) as we find it slightly faster in PyTorch

    Args:
        dim (int): Number of input channels.
        drop_path (float): Stochastic depth rate. Default: 0.0
        layer_scale_init_value (float): Init value for Layer Scale. Default: 1e-6.
        mlp_ratio (float): Ratio of mlp hidden dim to embedding dim. Default: 4.0.
        kernel_size (int): Kernel size for depthwise conv. Default: 7.
        dilation (int): Dilation for depthwise conv. Default: 1.
    """  # noqa: E501

    def __init__(
        self,
        dim: int,
        drop_path: float = 0.0,
        layer_scale_init_value: float = 1e-6,
        mlp_ratio: float = 4.0,
        kernel_size: int = 7,
        dilation: int = 1,
    ):
        super().__init__()

        self.dwconv = nn.Conv1d(
            dim,
            dim,
            kernel_size=kernel_size,
            padding=int(dilation * (kernel_size - 1) / 2),
            groups=dim,
        )  # depthwise conv
        self.norm = LayerNorm(dim, eps=1e-6)
        self.pwconv1 = nn.Linear(
            dim, int(mlp_ratio * dim)
        )  # pointwise/1x1 convs, implemented with linear layers
        self.act = nn.GELU()
        self.pwconv2 = nn.Linear(int(mlp_ratio * dim), dim)
        self.gamma = (
            nn.Parameter(layer_scale_init_value * torch.ones((dim)), requires_grad=True)
            if layer_scale_init_value > 0
            else None
        )
        self.drop_path = DropPath(drop_path) if drop_path > 0.0 else nn.Identity()

    def forward(self, x, apply_residual: bool = True):
        input = x

        x = self.dwconv(x)
        x = x.permute(0, 2, 1)  # (N, C, L) -> (N, L, C)
        x = self.norm(x)
        x = self.pwconv1(x)
        x = self.act(x)
        x = self.pwconv2(x)

        if self.gamma is not None:
            x = self.gamma * x

        x = x.permute(0, 2, 1)  # (N, L, C) -> (N, C, L)
        x = self.drop_path(x)

        if apply_residual:
            x = input + x

        return x


class ConvNeXtEncoder(nn.Module):
    def __init__(
        self,
        input_channels: int = 3,
        depths: list[int] = [3, 3, 9, 3],
        dims: list[int] = [96, 192, 384, 768],
        drop_path_rate: float = 0.0,
        layer_scale_init_value: float = 1e-6,
        kernel_size: int = 7,
    ):
        super().__init__()
        assert len(depths) == len(dims)

        self.downsample_layers = nn.ModuleList()
        stem = nn.Sequential(
            nn.Conv1d(
                input_channels,
                dims[0],
                kernel_size=kernel_size,
                padding=kernel_size // 2,
                padding_mode="zeros",
            ),
            LayerNorm(dims[0], eps=1e-6, data_format="channels_first"),
        )
        self.downsample_layers.append(stem)

        for i in range(len(depths) - 1):
            mid_layer = nn.Sequential(
                LayerNorm(dims[i], eps=1e-6, data_format="channels_first"),
                nn.Conv1d(dims[i], dims[i + 1], kernel_size=1),
            )
            self.downsample_layers.append(mid_layer)

        self.stages = nn.ModuleList()
        dp_rates = [x.item() for x in torch.linspace(0, drop_path_rate, sum(depths))]

        cur = 0
        for i in range(len(depths)):
            stage = nn.Sequential(
                *[
                    ConvNeXtBlock(
                        dim=dims[i],
                        drop_path=dp_rates[cur + j],
                        layer_scale_init_value=layer_scale_init_value,
                        kernel_size=kernel_size,
                    )
                    for j in range(depths[i])
                ]
            )
            self.stages.append(stage)
            cur += depths[i]

        self.norm = LayerNorm(dims[-1], eps=1e-6, data_format="channels_first")
        self.apply(self._init_weights)

    def _init_weights(self, m):
        if isinstance(m, (nn.Conv1d, nn.Linear)):
            nn.init.trunc_normal_(m.weight, std=0.02)
            nn.init.constant_(m.bias, 0)

    def forward(
        self,
        x: torch.Tensor,
    ) -> torch.Tensor:
        for i in range(len(self.downsample_layers)):
            x = self.downsample_layers[i](x)
            x = self.stages[i](x)

        return self.norm(x)