Spaces:
Runtime error
Runtime error
import gradio as gr | |
import os | |
import torch | |
#from demos.foodvision_mini.model import create_effnetb2_model | |
from model import create_effnetb2_model | |
from timeit import default_timer as timer | |
from typing import Tuple, Dict | |
#setup classnames | |
class_names = ['pizza', 'steak', 'sushi'] | |
# model and trandorms preparations | |
effnetb2, effnetb2_transforms = create_effnetb2_model(num_classes=3) | |
#load save weights | |
effnetb2.load_state_dict( | |
torch.load(f = "09_preptrained_effnetb2_20_percent (2).pth", | |
map_location = torch.device('cpu')) | |
) | |
# make predictions | |
def predict(img) -> Tuple[Dict,float] : | |
start_time = timer() | |
# this returns the prediction, and then, time | |
#start a timers | |
# transform the input image for use with effnetb2 | |
#put model into eval mode | |
# create a prediction label and prediction probability dictionary | |
img = effnetb2_transforms(img).unsqueeze(0) | |
effnetb2.eval() | |
with torch.inference_mode(): | |
pred_probs = torch.softmax(effnetb2(img), dim = 1) | |
pred_labels_and_probs = {class_names[i]:float(pred_probs[0][i]) for i in range(len(class_names))} | |
end_time = timer() | |
pred_time = round(end_time - start_time, 4) | |
return pred_labels_and_probs, pred_time | |
import os | |
example_list = [["examples/" + example] for example in os.listdir("examples")] | |
title = "FoodVision Mini" | |
Description = "An EfficientNetB2 feature computer vision model to classify images as pizza, steak or sushi" | |
article = "Cretated at......" | |
demo = gr.Interface(fn=predict,inputs=gr.Image(type='pil'), | |
outputs =[gr.Label(num_top_classes=3, label = "Predictions"), | |
gr.Number(label="Prediction time (s)")], | |
examples= example_list, | |
title = title, | |
description=Description, | |
article=article) | |
demo.launch(debug=False,share = True) # print errors locally, generate a publically shareable URL | |